• Title/Summary/Keyword: Downtime Cost

Search Result 45, Processing Time 0.028 seconds

Development of a Machining System Adapted Autonomously to Disturbances (장애 자율 대응 가공 시스템 개발)

  • Park, Hong-Seok;Park, Jin-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.373-379
    • /
    • 2012
  • Disruptions in manufacturing systems caused by system changes and disturbances such as the tool wear, machine breakdown, malfunction of transporter, and so on, reduce the productivity and the increase of downtime and manufacturing cost. In order to cope with these challenges, a new method to build an intelligent manufacturing system with biological principles, namely an ant colony inspired manufacturing system, is presented. In the developed system, the manufacturing system is considered as a swarm of cognitive agents where work-pieces, machines and transporters are controlled by the corresponding cognitive agent. The system reacts to disturbances autonomously based on the algorithm of each autonomous entity or the cooperation with them. To develop the ant colony inspired manufacturing system, the disturbances happened in the machining shop of a transmission case were analyzed to classify them and to find out the corresponding management methods. The system architecture with the autonomous characteristics was generated with the cognitive agent and the ant colony technology. A test bed was implemented to prove the functionality of the developed system.

Nonlinear spectral design analysis of a structure for hybrid self-centring device enabled structures

  • Golzar, Farzin G.;Rodgers, Geoffrey W.;Chase, J. Geoffrey
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.701-709
    • /
    • 2017
  • Seismic dissipation devices can play a crucial role in mitigating earthquake damages, loss of life and post-event repair and downtime costs. This research investigates the use of ring springs with high-force-to-volume (HF2V) dissipaters to create damage-free, recentring connections and structures. HF2V devices are passive rate-dependent extrusion-based devices with high energy absorption characteristics. Ring springs are passive energy dissipation devices with high self-centring capability to reduce the residual displacements. Dynamic behaviour of a system with nonlinear structural stiffness and supplemental hybrid damping via HF2V devices and ring spring dampers is used to investigate the design space and potential. HF2V devices are modelled with design forces equal to 5% and 10% of seismic weight and ring springs are modelled with loading stiffness values of 20% and 40% of initial structural stiffness and respective unloading stiffness of 7% and 14% of structural stiffness (equivalent to 35% of their loading stiffness). Using a suite of 20 design level earthquake ground motions, nonlinear response spectra for 8 different configurations are generated. Results show up to 50% reduction in peak displacements and greater than 80% reduction in residual displacements of augmented structure compared to the baseline structure. These gains come at a cost of a significant rise in the base shear values up to 200% mainly as a result of the force contributed by the supplemental devices.

Availability Analysis of (n,k) Cluster Web Server System using Software Rejuvenation Method over Switchover ((n,k) 클러스터 웹서버 시스템의 작업전이를 고려한 소프트웨어 재활기법의 가용도 분석)

  • 강창훈
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.2
    • /
    • pp.227-234
    • /
    • 2002
  • An cluster web server system, one has the problem that does the low availability occured by the high chance of the server failures and it is not easy to provide high performance and availability occuring software aging. In this paper, running cluster web sewers consists of n primary servers and k backup servers, propose software rejuvenation model on performance and switchover time. Based on the various system operational parameters, we calculate to evaluate the rejuvenation policy such steady-state probabilities, availability, and downtime cost. And we validate the solutions of mathematical model by experiments based on various operation parameters and fud that the software rejuvenation method can be adopted as prventive fault tolerant technique for stability of system.

  • PDF

Fault Diagnosis Method based on Feature Residual Values for Industrial Rotor Machines

  • Kim, Donghwan;Kim, Younhwan;Jung, Joon-Ha;Sohn, Seokman
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.89-99
    • /
    • 2018
  • Downtime and malfunction of industrial rotor machines represents a crucial cost burden and productivity loss. Fault diagnosis of this equipment has recently been carried out to detect their fault(s) and cause(s) by using fault classification methods. However, these methods are of limited use in detecting rotor faults because of their hypersensitivity to unexpected and different equipment conditions individually. These limitations tend to affect the accuracy of fault classification since fault-related features calculated from vibration signal are moved to other regions or changed. To improve the limited diagnosis accuracy of existing methods, we propose a new approach for fault diagnosis of rotor machines based on the model generated by supervised learning. Our work is based on feature residual values from vibration signals as fault indices. Our diagnostic model is a robust and flexible process that, once learned from historical data only one time, allows it to apply to different target systems without optimization of algorithms. The performance of the proposed method was evaluated by comparing its results with conventional methods for fault diagnosis of rotor machines. The experimental results show that the proposed method can be used to achieve better fault diagnosis, even when applied to systems with different normal-state signals, scales, and structures, without tuning or the use of a complementary algorithm. The effectiveness of the method was assessed by simulation using various rotor machine models.

Review of Application Cases of Machine Condition Monitoring Using Oil Sensors (윤활유 분석 센서를 통한 기계상태진단의 문헌적 고찰(적용사례))

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.307-314
    • /
    • 2020
  • In this paper, studies on application cases of machine condition monitoring using oil sensors are reviewed. Owing to rapid industrial advancements, maintenance strategies play a crucial role in reducing the cost of downtime and improving system reliability. Consequently, machine condition monitoring plays an important role in maintaining operation stability and extending the period of usage for various machines. Machine condition monitoring through oil analysis is an effective method for assessing a machine's condition and providing early warnings regarding a machine's breakdown or failure. Among the three prevalent methods, the online analysis method is predominantly employed because this method incorporates oil sensors in real-time and has several advantages (such as prevention of human errors). Wear debris sensors are widely employed for implementing machine condition monitoring through oil sensors. Furthermore, various types of oil sensors are used in different machines and systems. Integrated oil sensors that can measure various oil attributes by incorporating a single sensor are becoming popular. By monitoring wear debris, machine condition monitoring using oil sensors is implemented for engines, automotive transmission, tanks, armored vehicles, and construction equipment. Additionally, such monitoring systems are incorporated in aircrafts such as passenger airplanes, fighter airplanes, and helicopters. Such monitoring systems are also employed in chemical plants and power plants for managing overall safety. Furthermore, widespread application of oil condition diagnosis requires the development of diagnostic programs.

Shield TBM disc cutter replacement and wear rate prediction using machine learning techniques

  • Kim, Yunhee;Hong, Jiyeon;Shin, Jaewoo;Kim, Bumjoo
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.249-258
    • /
    • 2022
  • A disc cutter is an excavation tool on a tunnel boring machine (TBM) cutterhead; it crushes and cuts rock mass while the machine excavates using the cutterhead's rotational movement. Disc cutter wear occurs naturally. Thus, along with the management of downtime and excavation efficiency, abrasioned disc cutters need to be replaced at the proper time; otherwise, the construction period could be delayed and the cost could increase. The most common prediction models for TBM performance and for the disc cutter lifetime have been proposed by the Colorado School of Mines and Norwegian University of Science and Technology. However, design parameters of existing models do not well correspond to the field values when a TBM encounters complex and difficult ground conditions in the field. Thus, this study proposes a series of machine learning models to predict the disc cutter lifetime of a shield TBM using the excavation (machine) data during operation which is response to the rock mass. This study utilizes five different machine learning techniques: four types of classification models (i.e., K-Nearest Neighbors (KNN), Support Vector Machine, Decision Tree, and Staking Ensemble Model) and one artificial neural network (ANN) model. The KNN model was found to be the best model among the four classification models, affording the highest recall of 81%. The ANN model also predicted the wear rate of disc cutters reasonably well.

Failure Analysis to Derive the Causes of Abnormal Condition of Electric Locomotive Subsystem (센서 데이터를 이용한 전기 기관차의 이상 상태 요인분석)

  • So, Min-Seop;Jun, Hong-Bae;Shin, Jong-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.84-94
    • /
    • 2018
  • In recent years, the diminishing of operation and maintenance cost using advanced maintenance technology is attracting many companies' attention. Especially, the heavy machinery industry regards it as a crucial problem since a failure of heavy machinery requires high cost and long downtime. To improve the current maintenance process, the heavy machinery industry tries to develop a methodology to predict failure in advance and to find its causes using usage data. A better analysis of failure causes requires more data so that various kinds of sensor are attached to machines and abundant amount of product usage data is collected through the sensor network. However, the systemic analysis of the collected product usage data is still in its infant stage. Many previous works have focused on failure occurrence as statistical data for reliability analysis. There have been less works to apply product usage data into root cause analysis of product failure. The product usage data collected while failures occur should be considered failure cause analysis. To do this, this study proposes a methodology to apply product usage data into failure cause analysis. The proposed methodology in this study is composed of several steps to transform product usage into failure causes. Various statistical analysis combined with product usage data such as multinomial logistic regression, T-test, and so on are used for the root cause analysis. The proposed methodology is applied to field data coming from operated locomotive and the analysis result shows its effectiveness.

Design and Implementation of Real-Time Indirect Health Monitoring System for the Availability of Physical Systems and Minimizing Cyber Attack Damage (사이버 공격 대비 가동 물리장치에 대한 실시간 간접 상태감시시스템 설계 및 구현)

  • Kim, Hongjun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.6
    • /
    • pp.1403-1412
    • /
    • 2019
  • Effect of damage and loss cost for downtime is huge, if physical devices such as turbines, pipe, and storage tanks are in the abnormal state originated from not only aging, but also cyber attacks on the control and monitoring system like PLC (Programmable Logic Controller). To improve availability and dependability of the physical devices, we design and implement an indirect health monitoring system which sense temperature, acceleration, current, etc. indirectly, and put sensor data into Influx DB in real-time. Then, the actual performance of detecting abnormal state is shown using the indirect health monitoring system. Analyzing data are acquired using the real-time indirect health monitoring system, abnormal state and security threats can be double-monitored and lower maintenance cost utilizing prognostics and health management.

Availability Analysis of Systems with Time-Based Software Rejuvenation (시간 기반 소프트웨어 재활 방식의 가용도 분석)

  • Lee, Yutae;Kim, Hyoungseok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.2
    • /
    • pp.201-206
    • /
    • 2019
  • Rejuvenating a system periodically during the most idle time of the system reduces unexpected downtime caused by software aging and increases its availability. In general, software rejuvenation can be largely divided into two broad categories: time-based rejuvenation policy and condition-based rejuvenation policy. In time-based rejuvenation policy the software rejuvenation is triggered at scheduled time epochs with fixed time intervals, while in condition-based rejuvenation policy the software rejuvenation is performed when system state is checked to satisfy a specific condition. Conditionbased policy adds extra cost to the system due to system monitoring and aging estimation. This paper presents a stochastic model for analyzing time-based software rejuvenation mechanism, where the rejuvenation is triggered at scheduled time epochs with fixed time intervals, and provides an analytical solution for the steady-state availability, the user-perceived availability, and the corresponding cost.

An Optimization Model for O&M Planning of Floating Offshore Wind Farm using Mixed Integer Linear Programming

  • Sang, Min-Gyu;Lee, Nam-Kyoung;Shin, Yong-Hyuk;Lee, Chulung;Oh, Young-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.255-264
    • /
    • 2021
  • In this paper, we propose operations and maintenance (O&M) planning approach for floating offshore wind farm using the mathematical optimization. To be specific, we present a MILP (Mixed Integer Linear Programming that suggests the composition of vessels, technicians, and maintenance works on a weekly basis. We reflect accessibility to wind turbines based on weather data and loss of power generation using the Jensen wake model to identify downtime cost that vary from time to time. This paper also includes a description of two-stage approach for maintenance planning & detailed scheduling and numeric analysis of the number of vessels and technicians on the O&M cost. Finally, the MILP model could be utilized in order to establish the suitable and effective maintenance planning reflecting domestic situation.