• Title/Summary/Keyword: Downscaling Technique

Search Result 41, Processing Time 0.022 seconds

Development of Representative GCMs Selection Technique for Uncertainty in Climate Change Scenario (기후변화 시나리오 자료의 불확실성 고려를 위한 대표 GCM 선정기법 개발)

  • Jung, Imgook;Eum, Hyung-Il;Lee, Eun-Jeong;Park, Jihoon;Cho, Jaepil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.149-162
    • /
    • 2018
  • It is necessary to select the appropriate global climate model (GCM) to take into account the impacts of climate change on integrated water management. The objective of this study was to develop the selection technique of representative GCMs for uncertainty in climate change scenario. The selection technique which set priorities of GCMs consisted of two steps. First step was evaluating original GCMs by comparing with grid-based observational data for the past period. Second step was evaluating whether the statistical downscaled data reflect characteristics for the historical period. Spatial Disaggregation Quantile Delta Mapping (SDQDM), one of the statistical downscaling methods, was used for the downscaled data. The way of evaluating was using explanatory power, the stepwise ratio of the entire GCMs by Expert Team on Climate Change Detection and Indices (ETCCDI) basis. We used 26 GCMs based on CMIP5 data. The Representative Concentration Pathways (RCP) 4.5 and 8.5 scenarios were selected for this study. The period for evaluating reproducibility of historical period was 30 years from 1976 to 2005. Precipitation, maximum temperature, and minimum temperature were used as collected climate variables. As a result, we suggested representative 13 GCMs among 26 GCMs by using the selection technique developed in this research. Furthermore, this result can be utilized as a basic data for integrated water management.

An Impact Assessment of Climate and Landuse Change on Water Resources in the Han River (기후변화와 토지피복변화를 고려한 한강 유역의 수자원 영향 평가)

  • Kim, Byung-Sik;Kim, Soo-Jun;Kim, Hung-Soo;Jun, Hwan-Don
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.3
    • /
    • pp.309-323
    • /
    • 2010
  • As climate changes and abnormal climates have drawn research interest recently, many countries utilize the GCM, which is based on SRES suggested by IPCC, to obtain more accurate forecast for future climate changes. Especially, many research attempts have been made to simulate localized geographical characteristics by using RCM with the high resolution data globally. To evaluate the impacts of climate and landuse change on water resources in the Han-river basin, we carried out the procedure consisting of the CA-Markov Chain, the Multi-Regression equation using two independent variables of temperature and rainfall, the downscaling technique based on the RegCM3 RCM, and SLURP. From the CA-Markov Chain, the future landuse change is forecasted and the future NDVI is predicted by the Multi-Regression equation. Also, RegCM3 RCM 50 sets were generated by the downscaling technique based on the RegCM3 RCM provided by KMA. With them, 90 year runoff scenarios whose period is from 2001 to 2090 are simulated for the Han-river basin by SLURP. Finally, the 90-year simulated monthly runoffs are compared with the historical monthly runoffs for each dam in the basin. At Paldang dam, the runoffs in September show higher increase than the ones in August which is due to the change of rainfall pattern in future. Additionally, after exploring the impact of the climate change on the structure of water circulation, we find that water management will become more difficult by the changes in the water circulation factors such as precipitation, evaporation, transpiration, and runoff in the Han-river basin.

Downscaling Technique of Monthly GCM Using Daily Precipitation Generator (일 강수발생모형을 이용한 월 단위 GCM의 축소기법에 관한 연구)

  • Kyoung, Min Soo;Lee, Jung Ki;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.441-452
    • /
    • 2009
  • This paper describes the evaluation technique for climate change effect on daily precipitation frequency using daily precipitation generator that can use outputs of the climate model offered by IPCC DDC. Seoul station of KMA was selected as a study site. This study developed daily precipitation generation model based on two-state markov chain model which have transition probability, scale parameter, and shape parameter of Gamma-2 distribution. Each parameters were estimated from regression analysis between mentioned parameters and monthly total precipitation. Then the regression equations were applied for computing 4 parameters equal to monthly total precipitation downscaled by K-NN to generate daily precipitation considering climate change. A2 scenario of the BCM2 model was projected based on 20c3m(20th Century climate) scenario and difference of daily rainfall frequency was added to the observed rainfall frequency. Gumbel distribution function was used as a probability density function and parameters were estimated using probability weighted moments method for frequency analysis. As a result, there is a small decrease in 2020s and rainfall frequencies of 2050s, 2080s are little bit increased.

Analysis of Future Land Use and Climate Change Impact on Stream Discharge (미래토지이용 및 기후변화에 따른 하천유역의 유출특성 분석)

  • Ahn, So Ra;Lee, Yong Jun;Park, Geun Ae;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.215-224
    • /
    • 2008
  • The effect of streamflow considering future land use change and vegetation index information by climate change scenario was assessed using SLURP (Semi-distributed Land-Use Runoff Process) model. The model was calibrated and verified using 4 years (1999-2002) daily observed streamflow data for the upstream watershed ($260.4km^2$) of Gyeongan water level gauging station. By applying CA-Markov technique, the future land uses (2030, 2060, 2090) were predicted after test the comparison of 2004 Landsat land use and 2004 CA-Markov land use by 1996 and 2000 land use data. The future land use showed a tendency that the forest and paddy decreased while urban, grassland and bareground increased. The future vegetation indices (2030, 2060, 2090) were estimated by the equation of linear regression between monthly NDVI of NOAA AVHRR images and monthly mean temperature of 5 years (1998-2002). Using CCCma CGCM2 simulation result based on SRES A2 and B2 scenario (2030s, 2060s, 2090s) of IPCC and data were downscaled by Stochastic Spatio-Temporal Random Cascade Model (SST-RCM) technique, the model showed that the future runoff ratio was predicted from 13% to 34% while the runoff ratio of 1999-2002 was 59%. On the other hand, the impact on runoff ratio by land use change showed about 0.1% to 1% increase.

Assessment of Future Climate and Land Use Change on Hydrology and Stream Water Quality of Anseongcheon Watershed Using SWAT Model (II) (SWAT 모형을 이용한 미래 기후변화 및 토지이용 변화에 따른 안성천 유역 수문 - 수질 변화 분석 (II))

  • Lee, Yong Jun;An, So Ra;Kang, Boosik;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.665-673
    • /
    • 2008
  • This study is to assess the future potential climate and land use change impact on streamflow and stream water quality of the study watershed using the established model parameters (I). The CCCma (Canadian Centre for Climate Modelling and Analysis) CGCM2 (Canadian Global Coupled Model) based on IPCC SRES (Special Report Emission Scenarios) A2 and B2 scenarios were adopted for future climate condition, and the data were downscaled by Stochastic Spatio-Temporal Random Cascade Model technique. The future land use condition was predicted by using modified CA-Markov (Cellular Automata-Markov chain) technique with the past time series of Landsat satellite images. The model was applied for the future extreme precipitation cases of around 2030, 2060 and 2090. The predicted results showed that the runoff ratio increased 8% based on the 2005 precipitation (1160.1 mm) and runoff ratio (65%). Accordingly the Sediment, T-N and T-P also increased 120%, 16% and 10% respectively for the case of 50% precipitation increase. This research has the meaning in providing the methodological procedures for the evaluation of future potential climate and land use changes on watershed hydrology and stream water quality. This model result are expected to plan in advance for healthy and sustainable watershed management and countermeasures of climate change.

Performance Evaluation of Rainfall Disaggregation according to Temporal Scale of Rainfall Data (강우자료의 시간해상도에 따른 강우 분해 성능 평가)

  • Lee, Jeonghoon;Jang, Juhyoung;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.345-352
    • /
    • 2018
  • In this study, rainfall data with various temporal scales (3-, 6-, 12-, 24-hr) are disaggregated into 1-hourly rainfall data to evaluate the performance of rainfall disaggregation technique. The rainfall disaggregation technique is based on a database generated by the stochastic point rainfall model, the Neyman-Scott Rectangular Pulse Model (NSRPM). Performance evaluation is carried out using July rainfall data of Ulsan, Changwon, Busan and Milyang weather stations in Korea. As a result, the rainfall disaggregation technique showed excellent performance that can consider not only the major statistics of rainfall but also the spatial correlation. It also indirectly shows the uncertainty of future climate change scenarios with daily temporal scale. The rainfall disaggregation technique is expected to disaggregate the future climate change scenarios, and to be effective in the future watershed management.

Development of Nonlinear Downscaling Technique to Use GCM Data (GCM 자료를 활용하기 위한 비선형 축소기법의 개발)

  • Kim, Soo-Jun;Lee, Keon-Haeng;Kim, Hung-Soo;Jun, Hwan-Don
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.73-73
    • /
    • 2011
  • 일반적으로 미래 기후자료를 산출하기 위하여 기후 시스템을 수치화한 GCM에 의한 결과를 사용한다. 하지만 GCM의 시공간적인 해상도의 문제로 기후변화에 따른 수자원 영향 분석을 위해서는 축소기법의 적용과정이 필요하다. 이를 위하여 전세계적으로 통계학적 방법에 의한 일기발생기를 이용한 축소기법 방법이 많이 이용되고 있다. 하지만 일기발생기에 의한 방법은 월 평균값의 연간 변동성이나 계절적 변화를 재현하는데 한계가 있는 것이 사실이다. 본 연구에서는 이러한 일기 발생기의 한계가 강우의 발생 특성이 평균과 표준편차로 대표되는 통계학적 기법에 근거하고 있기 때문이라고 파악하였다. 따라서 최저온도, 최고온도, 강수량, 상대습도, 풍속, 일사량과 같이 6개의 기상자료를 선정하여 비선형 관계를 고려할 수 있는 기법을 적용하고자 하였다. 이를 위하여 SRES A1B 기후변화 시나리오에 의한 CNCM3 기후모형의 결과를 이용하였고 각 관측소 마다 다양하게 발생하는 강우 특성은 과거의 강우 특성과 유사할 것이라는 가정하에 공간적 축소기법으로 인공 신경망(ANN: Artificial Neural Network) 을 적용하고 시간적 축소기법으로 최근린(NN: Nearest Neighbor) 방법과 유전자 알고리즘(GA: Genetic Algorithm)을 적용하는 기법을 함께 제시하였다. 이러한 기법들을 실제 남한강 유역의 기상관측소 지점으로 적용하여 검증한 결과 모의된 대부분의 기상자료가 관측치를 비교적 잘 재현하였다. 본 연구에서 제시한 비선형 축소기법은 추후 기후변화 연구에 중요한 방법론으로 활용될 수 있을 것으로 기대된다.

  • PDF

Estimation of Design Rainfall Based on Climate Change Scenario in Jeju Island (기후변화 시나리오를 고려한 제주도 확률강우량 산정)

  • Lee, Jun-Ho;Yang, Sung-Kee;Jung, Woo-Yul;Yang, Won-Seok
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.383-391
    • /
    • 2015
  • As occurrence of gradually increasing extreme temperature events in Jeju Island, a hybrid downscaling technique that simultaneously applies by dynamical method and statistical method has implemented on design rainfall in order to reduce flood damages from severe storms and typhoons.As a result of computation, Case 1 shows a strong tendency to excessively compute rainfall, which is continuously increasing. While Case 2 showed similar trend as Case 1, low design rainfall has computed by rainfall in A1B scenario. Based on the design rainfall computation method mainly used in Preventive Disaster System through Pre-disaster Effect Examination System and Basic Plan for River of Jeju Island which are considering climatic change for selecting 50-year and 100-year frequencies. Case 3 selecting for Jeju rain gage station and Case 1 for Seogwipo rain gage station. The results were different for each rain gage station because of difference in rainfall characteristics according to recent climatic change, and the risk of currently known design rainfall can be increased in near future.

Projection of future extreme precipitation events over Republic of Korea using a dynamical downscaling technique: Analysis on change of daily maximum precipitation (역학적 상세화 기법을 활용한 우리나라 극한 강수사상 전망: 일최대강수량 변화 분석)

  • Shin, Jin-Ho;Lee, Hyo-Shin;Kwon, Won-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1580-1584
    • /
    • 2010
  • 지역기후모델 RegCM3 이용하여 역학적 상세화 이중둥지격자체계를 구축하고 관측, ECHO-G/S의 20C3M 및 SRES A2 시나리오를 이용하여 동아시아(60km 분해능)와 한반도(20km 분해능)에 대한 현재 및 미래(1971-2100, 130년)의 기후변화 시나리오 자료를 생산하였다. 미래 동아시아와 한반도지역은 기온상승에 의해 대기 중 수증기 함유량 증가와 여름 몬순의 강화로 전 계절에 걸쳐 강수량이 증가하고 토양수분, 증발산도 증가할 것으로 전망되었다. 상세화된 일(daily)강수량 자료를 일반극치(general extreme value, GEV)분석을 활용하여 20세기 동안 한반도의 일최대강수량의 공간 분포를 분석하고 미래 강수의 일최대강수량 변화를 전망하였다. 20세기 (1971-2000)에는 남해안과 경기 내륙지방에서 일최대강수량의 빈도와 평균값이 나타났다. 21세기에는 일최대강수량의 평균은 현재보다 약 10 $mmday^{-1}$, 20년 빈도 강수량은 60 $mmday^{-1}$ 정도 증가할 것이고, 남해안과 서해안과 충청내륙일부지방, $39^{\circ}N$ 이북에서 뚜렷이 나타날 것으로 전망되었다.

  • PDF

The Potential Effects of Climate Change on Streamflow in Rivers Basin of Korea Using Rainfall Elasticity

  • Kim, Byung Sik;Hong, Seung Jin;Lee, Hyun Dong
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.9-20
    • /
    • 2013
  • In this paper, the rainfall elasticity of streamflow was estimated to quantify the effects of climate change on 5 river basins. Rainfall elasticity denotes the sensitivity of annual streamflow for the variations of potential annual rainfall. This is a simple, useful method that evaluates how the balance of a water cycle on river basins changes due to long-term climate change and offers information to manage water resources and environment systems. The elasticity method was first used by Schaake in 1990 and is commonly used in the United States and Australia. A semi-distributed hydrological model (SLURP, semi-distributed land use-based runoff processes) was used to simulate the variations of area streamflow, and potential evapotranspiration. A nonparametric method was then used to estimate the rainfall elasticity on five river basins of Korea. In addition, the A2 (SRES IPCC AR4, Special Report on Emission Scenarios IPCC Fourth Assessment Report) climate change scenario and stochastic downscaling technique were used to create a high-resolution weather change scenario in river basins, and the effects of climate change on the rainfall elasticity of each basin were then analyzed.