• Title/Summary/Keyword: Downhole tests

Search Result 16, Processing Time 0.028 seconds

Evaluation of Dynamic Soil Properties Using Dynamic Tests (동적시험에 의한 동적지반특성 평가)

  • Lee, Myung Jae;Shin, Jong Ho;Kang, Ki Young;Chon, Chun Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.91-102
    • /
    • 1990
  • The representative tests in this study are performed at a selected site which has the soil layers to analyze the safety and economy of the dynamic analysis for the variable soil conditions. Crosshole test and downhole test of small strain level tests and triaxial test of large strain level test are performed in the soil layers, and in the rock layers, crosshole test and downhole in-situ tests and laboratory sonic test are performed to measure the dynamic shear modulus, damping ratio, and Poisson$\acute{s}$ ratio of the soil and the rock. The correlations between the dynamic soil properties from the tests and the basic soil properties are determined through the regression analysis. The representative design value of the soil is determined by probability analysis of the test results. It is determined from the nonlinear stress-strain model in soils, and the value at small strain level is computed in rocks according to the distribution of the type of soils and the affecting variables. The constitutive value is systematized to be utilized in the analysis of the test results, and computation of the input soil data.

  • PDF

Analysis of Downhole Seismic Data Using Inversion Method (역산이론을 이용한 공내하향 탄성파시험 결과의 해석)

  • 목영진
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.29-38
    • /
    • 1994
  • A new method of analyzing downhole seismic data is presented. The method is based upon inverse theory and can be used to resolve wave velocity profiles to a much greater accuracy than possible with conventional analysis methods such as direct or interval measurements. In addition, use of inverse theory permits a rational basis for judging the quality of the velocity profile. Five case studies are presented to illustrate application of the inversion method at various geological formations.

  • PDF

Development of Integrated Type Main Frame and Downhole Sonde Apparatus for Hydraulic Packer Testing in Seabed Rock under High Water Pressure (고수압 해저지반 수리특성 조사용 일체형 메인 프레임과 공내 측정장치 개발)

  • Bae, SeongHo;Kim, Jangsoon;Jeon, Seokwon;Kim, Hagsoo
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.258-276
    • /
    • 2018
  • The accurate and quantitative ground information on the hydraulic conductivity characteristics of rock mass is one of the key factors for evaluation of the hydro-geological behaviour of rock mass around an excavated opening under high water pressure. For tunnel and rock structures in seabed, where the sea acts as an infinite source of water, its importance become greater with increasing construction depth below sea level. In this study, to improve the problems related with poor system configuration and incorrect data acquisition of previous hydraulic packer testing equipment, we newly developed an integrated main frame and 30 bar level waterproof downhole sonde apparatus, which were optimized for deep hydraulic packer test in seabed rock mass. Integration of individual test equipment into one frame allows safe and efficient field testing work on a narrow offshore drilling platform. For the integrated type main frame, it is possible to make precise stepwise control of downhole net injection pressure at intervals of $2.0kg_f/cm^2$ or less with dual hydraulic oil volume controller. To ensure the system performance and the operational stability of the prototype mainframe and downhole sonde apparatus, the field feasibility tests were completed in two research boreholes, and using the developed apparatus, the REV(Representative Elementary Volume) scale deep hydraulic packer tests were successfully carried out at a borehole located in the basalt region, Jeju. In this paper, the characteristics of the new testing apparatus are briefly introduced and also some results from the laboratory and in-situ performance tests are shown.

Evaluation of Seismic Response Characteristics of Hong-Seong Area based on In-Situ and Laboratory Tests (현장 및 실내시험에 기초한 홍성지역 지진응답특성 평가)

  • 박덕근;김교원
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.25-35
    • /
    • 2001
  • For the ground resrxmse analysis, both in-situ and laboratory testing techniques such as downhole, SASW, resonant column and torsional shear tests were perlormed for Hong-Seong area. The grOlmd upper 30m is classified as SD since it has an average shear wave velocity as 209m/s. The response specLrums obtained by site-specific analyses generally satisfied the seismic code, but near the resonance period the motion was evaluated to be higher than the code.

  • PDF

A Comparative Study on Borehole Seismic Test Methods for Site Classification

  • Jung, Jong-Suk;Sim, Youngjong;Park, Jong-Bae;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.3 no.4
    • /
    • pp.389-397
    • /
    • 2012
  • In this study, crosshole seismic test, donwhole seismic test, SPT uphole test, and suspension PS logging (SPS logging) were conducted and the shear wave velocities of these tests were compared. The test demonstrated the following result: Downhole tests showed similar results compared to those of crosshole tests, which is known to be relatively accurate. SPS logging showed reliable results in the case of no casing, i.e. in the rock mass, while, in the case of soil ground, its values were lower or higher than those of other tests. SPT-uphole tests showed similar results in the soil ground and upper area of rock mass compared to other methods. However, reliable results could not be obtained from these tests because SPT sampler could not penetrate into the rock mass for the tests.

Applications of SASW Method to Civil Engineering (토목 공학에서의 SASW 기법의 활용)

  • Song Myung-Jun;Jung Yun-Moon;Lee Young-Nam
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.174-179
    • /
    • 1999
  • Shear wave velocity, one of major elastic constants in the dynamic design for civil structures, is conventionally measured from downhole, crosshole or sonic logging tests. SASW (Spectral Analysis of Surface Waves) method, which overcomes the disadvantage of the in-hole tests, can evaluate subsurface stiffness nondestructively and nonintrusively through measuring surface waves on surface. In this paper, principles of the SASW method are briefly described and the results of various field tests, conducted to investigate the applicability of the method, are summarized. The SASW method was successfully applied in evaluating the effects of dynamic compaction at Inchon international airport site, applied in evaluating the integrity of the lining and sidewall at a testing tunnel located in Mabukri, and applied in detecting thickness of a concrete retaining wall. The results of field tests and the nondestructive and economical characteristics of the method show the promising future of the SASW method in civil engineering projects.

  • PDF

Analysis of geotechnical Seismic Sensitivity in Kyeongju (경주 지역의 지반공학적 지진 민감도 분석)

  • 선창국
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.130-140
    • /
    • 2000
  • The earthquake hazard has been evaluated for 10km by 10km area around Kyeongju which is located near Yangsan fault and has abundant historical earthquake records. The ground motion potentials were determined based on equivalent linear analysis by using the data obtained from in situ and laboratory tests and the El centro eartqhuake record scaled to CLE and OLE of the region. The in situ tests include 9 boring investigations 2 crosshole 7 downhole 13 SASW tests and in the laboratory X-ray diffraction analyses and resonant column tests were performed. The peak ground accelerations range between 0.140g and 0.286g on CLE and between 0.051g and 0.116g on OLE respectively showing the good potential of amplification in the deep alluvial layer which is common in Kyeongju area. the response spectrum based on the Korea design guide was sometimes underestimate the motion. particularly near the natural period of the site and the importance of site-specific analysis and need for the improved site categorization method were introduced.

  • PDF

Investigation into Weathering Degree and Shear Wave Velocity for Decomposed Granite in Hongsung (홍성 지역 화강 풍화 지층에 대한 풍화도 및 전단파 속도 고찰)

  • Sun, Chang-Guk;Kim, Bo-Hyun;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.360-372
    • /
    • 2005
  • The weathering degree and shear wave velocity, $V_S$, were evaluated for decomposed granite layers in Hongsung, where earthquake damages have occurred. The subsurface geological layers and their $V_S$ profiles were determined, respectively, from boring investigations and seismic tests such as crosshole, downhole and SASW tests. The subsurface layers were composed of 10 to 40 m thickness of weathered residual soil and weathered rock in most sites. In the laboratory, the weathering indexes with depth were estimated based on the results of X-ray fluorescence analysis using samples obtained from field, together with the dynamic soil properties determined from resonant column tests using reconstituted specimens. According to the results, it was examined that most weathering degrees represented such as VR, Li, CIA, MWPI and WIP were decreased with increasing depth with exception of RR and CWI. For weathered residual soils in Hongsung, the $V_S's$ determined from borehole seismic tests were slightly increased with increasing depth, and were similar to those from resonant column tests. Furthermore, the $V_S$ values were independent on the weathering degrees, which were decreased with depth.

  • PDF

Disturbance Effects of Field $V_S$ Probe (현장 전단파 속도 프로브의 교란효과)

  • Yoon, Hyung-Koo;Lee, Chang-Ho;Lee, Woo-Jin;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.605-612
    • /
    • 2008
  • The shear wave velocity ($V_s$) has been commonly used to evaluate the dynamic properties of soil. The field $V_s$ probe (FVP) was already developed to assess the shear stiffness of a soft clay. The objective of this study is to investigate the disturbance effects of the FVP due to the penetration. The laboratory tests are conducted in a large-scale consolidometer (calibration chamber). The reconstituted clay is mixed at the water content of 110% using a slurry mixer. The FVP and down-hole test are carried out every 1cm interval to compare the data. In addition, two square rods with transducers are also implemented to get the reference value. The shear waves evaluated by the FVP, dow-hole tests, and reference rods are closely matched. This study suggests that the disturbance effect of the FVP due to the penetration into the soft clay soils is small enough and the $V_s$ evaluated by the FVP reflects well the in-situ characteristics. Furthermore, the combination of the FVP and down-hole test shows the possibility of hybrid equipment.

  • PDF

Feasibility study on the Evaluation of the degree of consolidation using shear waves for soft clay deposits (전단파를 이용한 연약지반의 압밀도 평가기법 적용성 연구)

  • Youn, Jun-Ung;Kim, Jong-Tae;Lee, Jin-Sun;Kim, Dong-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.442-451
    • /
    • 2008
  • The evaluation of field degree of consolidation on soft clays has been an important problem in geotechnical areas. Monitoring either settlements or pore water pressures has been widely applied in the filed, but occasionally they have some problems. This study addresses the suggestion and application of another method for evaluating the degree of consolidation using shear wave velocities. A research site where soft clay layers were consolidated by surcharging loads was chosen. Laboratory tests were performed to determine the relation between shear wave velocity and effective stress. Field seismic tests were conducted several times during the consolidation of the clay layers. The tests results show that the shear wave velocity increased significantly as clays consolidated. The shear wave velocities at each field stress states were derived from the laboratory results and the degree of consolidation was evaluated by comparing the shear wave velocities obtained by laboratory and field seismic methods. In most stress states, the degree of consolidation evaluated using the shear wave velocity matched well with that obtained from field settlement record, showing the potential of applying the method using shear waves in the evaluation of field degree of consolidation on soft clay deposits.

  • PDF