• Title/Summary/Keyword: Down-flow hanging sponge

Search Result 2, Processing Time 0.014 seconds

A pilot-scale study on a down-flow hanging sponge reactor for septic tank sludge treatment

  • Machdar, Izarul;Muhammad, Syaifullah;Onodera, Takashi;Syutsubo, Kazuaki
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.195-204
    • /
    • 2018
  • A pilot scale study was conducted on a down-flow hanging sponge (DHS) reactor installed at a sewage treatment plant in Banda Aceh, Indonesia for treatment of desludging septic tank wastewater. Raw wastewater with an average biochemical oxygen demand (BOD) and total suspended solids of 139 mg/L and 191 mg/L, respectively, was pumped into the reactor. Two different hydraulic retention times (HRTs, 3 h and 4 h) were investigated, equivalent to organic loadings of 1.11 and $0.78kg\;BOD/m^3/d$, respectively. The average BOD concentration in the final effluent was 46 and 26 mg/L at HRTs of 3 and 4 h, respectively. The concentration of retained sludge along the reactor height was 10.2-18.7 g VSS/L-sponge, and the sludge activities were 0.24-0.32 and 0.04-0.40 mg/g VSS/h for heterotrophs and nitrification, respectively. Values of water hold-up volume, dispersion coefficient, and number of tank in-series found from tracer studies of clean sponge and biomass-loaded sponge confirmed that growth of retained sludge on the sponge module improved hydraulic performance of the reactor. Adoption of the DHS reactor by this Indonesian sewage treatment plant would enhance the role of the current desludging septic tank wastewater treatment system.

Kinetic modeling of organic and nitrogen removal from domestic wastewater in a down-flow hanging sponge bioreactor

  • Nga, Dinh Thi;Hiep, Nguyen Trung;Hung, Nguyen Tri Quang
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.243-250
    • /
    • 2020
  • A down-flow hanging sponge (DHS) bioreactor was operated for the treatment of domestic wastewater. The Stover-Kincannon model was applied for kinetic evaluation of the reactor performance during the operational period. As a result, the coefficient of determination (R2) for straight lines of effluent concentration from the experimental data and from the predictive data of BOD5; NH4+-N; and TN were 0.9727; 0.9883; and 0.9934, respectively. The calculation of saturation value constant (Umax - g L-1 d-1) and maximum utilization rate constant (KB - g L-1 d-1) were 56.818 and 75.034 for BOD5; 2.960 and 4.713 for NH4+-N; 2.810 and 8.37 for TN, respectively. The study suggests that Stover-Kincannon model can be used for effective evaluation of kinetic removal of BOD5; NH4+-N; and TN from domestic wastewater treated in a DHS bioreactor.