• Title/Summary/Keyword: Down Literal, QAC

Search Result 2, Processing Time 0.016 seconds

(A Study on the Design of Analog Converter Using Neuron MOS) (뉴런모스를 이용한 아날로그 변환기 설계에 관한 연구)

  • Han, Seong-Il;Park, Seung-Yong;Kim, Heung-Su
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.3
    • /
    • pp.201-210
    • /
    • 2002
  • This paper describes a 3.3 (V) low power 4 digit CMOS quaternary to analog converter (QAC) designed with a neuron MOS($\upsilon$MOS) down literal circuit block and cascode current mirror source block. The neuron MOS down literal architecture allows the designed QAC to accept not only 4 level voltage inputs, but also a high speed sampling rate quaternary voltage source LSB. Fast settling time and low power consumption of the QAC are achieved by utilizing the proposed architecture. The simulation results of the designed 4 digit QAC show a sampling rate of 6(MHz) and a power dissipation of 24.5 (mW) with a single power supply of 3.3 (V) for a CMOS 0.35${\mu}{\textrm}{m}$ n-well technology.

MVL Data Converters Using Neuron MOS Down Literal Circuit (뉴런모스 다운리터럴 회로를 이용한 다치논리용 데이터 변환기)

  • Han, Sung-Il;Na, Gi-Soo;Choi, Young-Hee;Kim, Heung-Soo
    • Journal of IKEEE
    • /
    • v.7 no.2 s.13
    • /
    • pp.135-143
    • /
    • 2003
  • This paper describes the design techniques of the data converters for Multiple-Valued Logic(MVL). A 3.3V low power 4 digit CMOS analog to quaternary converter (AQC) and quaternary to analog converter (QAC) mainly designed with the neuron MOS down literal circuit block has been introduced. The neuron MOS down literal architecture allows the designed AQC and QAC to accept analog and 4 level voltage inputs, and enables the proposed circuits to have the multi-threshold properity. Low power consumption of the AQC and QAC are achieved by utilizing the proposed architecture.

  • PDF