• Title/Summary/Keyword: Doublet Time

Search Result 45, Processing Time 0.021 seconds

Development of Prism Dot-sight Combined with Thermal Imaging Camera (열영상 카메라가 결합된 프리즘 도트사이트 개발)

  • Park, Seung-Hwan;Jung, Bo-Seon;Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.4
    • /
    • pp.479-485
    • /
    • 2014
  • Purpose: This study relates to the development of the prism dot-sight combined with the thermal imaging camera. Methods: We have placed a reflector designed to the doublet type in the front of a BS (beam splitting) prism, have placed an OLED panel and a dot reticle generator to the top and bottom of the reflecting surface of the BS prism, and have placed a detachable magnifier between the BS prism and the observer by which the observer can see the magnified image of the OLED panel. By doing this, we were able to configure the new type prism dot-sight combined with the thermal imaging camera. Results: By placing the removable magnifier designed with a new type between the BS prism and the observer, we could design the new type prism dot-sight which performs the role of the dot sight by removing the magnifier during the day-time, and performs the role of the night scope during the night-time by which we can observe the enlarged image of the thermal imaging camera through the BS prism by attaching the removable magnifier. Conclusions: In this study, we have developed the prism dot-sight combined with the thermal imaging camera which is able to play the role of the day or night scope selectively, by disposing the designed magnifier characterized by the focal length of 44 mm, the viewing angle of ${\pm}7.0^{\circ}$, and the MTF value of 0.5 or more at the criterion of 50 lp/mm and the 0.7 field between the BS prism and the observer. By doing so, we could design and fabricate the new type prism dot-sight combined with the thermal imaging camera which can further increase the rapidity of firing and provide more convenience in the mounting of a firearm than the detachable combination of an existing dot sight and an existing night scope.

Magnetic Properties of Superparamagnetic Ni-Zn Ferrite for Nano·Bio Fusion Applications (나노·바이오 융합응용을 위한 초상자성 Ni-Zn Ferrite의 자기적 특성연구)

  • Lee, Seung-Wha;Ryu, Yeon-Guk;Yang, Kea-Joon;An, Jung-Su;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.100-105
    • /
    • 2005
  • $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticles have been prepared by a sol-gel method. The structural and magnetic properties have been investigated by DTA/TGA, XRD, SEM, and $M\ddot{o}ssbauer$ spectroscopy, VSM. $Ni_{0.9}Zn_{0.1}Fe_2O_4$ powder that was annealed at $300^{\circ}C$ has spinel structure and behaved superparamagnetically. The estimated size of superparammagnetic Ni-Zn ferrite nanoparticle is around 10 nm. The hyperfine fields at 13 K for the A and B patterns were found to be 533 and 507 kOe, respectively. The blocking temperature ($T_B$) of superparammagnetic $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticle is about 250 K. The magnetic anisotropy constant and relaxation time constant of $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticle were calculated to be $1.6\times10^6\;ergs/cm^3$ and ${\tau}_0=5.0{\times}10^{-13}$ s, respectively. Also, Temperature increased up to $43^{\circ}C$ within 10 minutes under AC magnetic field of 7 MHz. It is considered that $Ni_{0.9}Zn_{0.1}Fe_2O_4$ powder that was annealed at $300^{\circ}C$ is available for biomedicine application such as hyperthermia, drug delivery system and contrast agents in MRI.

Analysis of Motion Response and Drift Force in Waves for the Floating-Type Ocean Monitoring Facilities (부유식 해상관측시설의 파랑중 운동 및 표류력 해석)

  • YOON Gil Su;KIM Yong Jig;KIM Dong Jun;KANG Shin Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.2
    • /
    • pp.202-209
    • /
    • 1998
  • A three-dimensional numerical method based on the Green's integral equation is developed to predict the motion response and drift force in waves for the ocean monitoring facilities. In this method, we use source and doublet distribution, and triangular and rectangular eliments. To eliminate the irregular frequency phenomenon, the method of improved integral equation is applied and the time-mean drift force is calculated by the method of direct pressure integration over the body surface. To conform the validity of the present numerical method, some calculations for the floating sphere are performed and it is shown that the present method provides sufficiently reliable results. As a calculation example for the real facilities, the motion response and the drift force of the vertical cylinder type ocean monitoring buoy with 2.6 m diameter and 3,77 m draft are calculated and discussed. The obtained results of motion response can be used to determine the shape and dimension of the buoy to reduce the motion response, and other data such as the effect of motion reduction due to a damper can be predictable through these motion calculations. Also, the calculation results of drift force can be used in the design procedure of mooring system to predict the maximum wave load acting on the mooring system. The present method has, in principle, no restriction in the application to the arbitrary shape facilities. So, this method can be a robust tool for the design, installation, and operation of various kinds of the floating-type ocean monitoring facilities.

  • PDF

A Study on the Iron Compounds of Cinder Cones' Scoria in the Southern Area of Halla Mt., Jeju Island (제주도 한라산 남부 지역 분석구 스코리아의 철 화합물에 관한 연구)

  • Ko, Jeong Dae;Choi, Won Jun
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.6
    • /
    • pp.213-218
    • /
    • 2016
  • This study reviewed mineral composition on Scoria samples of this area, atomic value state of oxidized steel, and magnetic property in order to look into characteristics of scoria that was distributed in southern area of mountainous areas, Halla Mt. of Jeju Island. By XRD analysis, mineral composition was confirmed, and characteristics of iron compounds existed in samples were investigated through $M{\ddot{o}}ssbauer$ spectroscope. Composing minerals could be learnt as feldspar basalt from XRD analysis because composting minerals were composed of quartz and feldspar anorite mainly, and iron compounds were made up with olivine, pyroxene, ilmenite, hematite, and magnetite. By $M{\ddot{o}}ssbauer$ spectroscope analysis on these iron compounds. it consisted of hematite and magnetite which showed hyperfine magnetic field of sextet mostly, and also doublet by olivine, pyroxene, ilmenite could be seen as appearing together. As a result of comparing with samples of Jeju western area having been announced in previous research, I.S. and Q.S. values of olivine, $Fe^{2+}$, were 122 mm/s and 3.09~3.13 mm/s respectively, and a fact could be known that $Fe^{2+}$ olivine having similar structure each other was contained, and the ratio of $Fe^{3+}/Fe_{tot.}$. was 85.90~92.82 %. From these findings, it was able to be presumed that they belonged to samples having been formed on the land at the same period of time. As a result of investigating area ratio of tetrahedron (A site) and octahedron (B site) regarding magnetite in samples, it was turn out to be 0.22~0.55 less than 2.

Catadioptric Omnidirectional Optical System Using a Spherical Mirror with a Central Hole and a Plane Mirror for Visible Light (중심 구멍이 있는 구면거울과 평면거울을 이용한 가시광용 반사굴절식 전방위 광학계)

  • Seo, Hyeon Jin;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.2
    • /
    • pp.88-97
    • /
    • 2015
  • An omnidirectional optical system can be described as a special optical system that images in real time a panoramic image with an azimuthal angle of $360^{\circ}$ and the altitude angle corresponding to the upper and lower fields of view from the horizon line. In this paper, for easy fabrication and compact size, we designed and fabricated a catadioptric omnidirectional optical system consisting of the mirror part of a spherical mirror with a central hole (that is, obscuration), a plane mirror, the imaging lens part of 3 single spherical lenses, and a spherical doublet in the visible light spectrum. We evaluated its image performance by measuring the cut-off spatial frequency using automobile license plates, and the vertical field of view using an ISO 12233 chart. We achieved a catadioptric omnidirectional optical system with vertical field of view from $+53^{\circ}$ to $-17^{\circ}$ and an azimuthal angle of $360^{\circ}$. This optical system cleaniy imaged letters on a car's front license plate at the object distance of 3 meters, which corresponds to a cut-off spatial frequency of 135 lp/mm.