• Title/Summary/Keyword: Double-layer

Search Result 1,555, Processing Time 0.026 seconds

Electrical and Optical Properties of ITO Thin Films with Various Thicknesses of SiO2 Buffer Layer for Capacitive Touch Screen Panel (정전용량식 터치스크린 패널을 위한 SiO2 버퍼층 두께에 따른 ITO 박막의 전기적 및 광학적 특성)

  • Yeun-Gun, Chung;Yang-Hee, Joung;Seong-Jun, Kang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1069-1074
    • /
    • 2022
  • In this study, we prepared ITO thin films on the Nb2O5/SiO2 double buffer layer and investigated electrical and optical properties according to the change of SiO2 buffer layer thickness (40~50nm). The ITO thin film fabricated on the Nb2O5/SiO2 double buffer layer exhibited a broad surface roughness with a small value ranging of 0.815 to 1.181nm, and the sheet resistance was 99.3 to 134.0Ω/sq. It seems that there is no problem in applying the ITO thin film to a capacitive touch screen panel. In particular, the average transmittance in the short-wavelength (400~500nm) region and the chromaticity (b*) of the ITO thin film deposited on the Nb2O5(10nm)/SiO2(40nm) double buffer layer showed significantly improved results as 83.58% and 0.05, respectively, compared to 74.46% and 4.28 of ITO thin film without double buffer layer. As a result, it was confirmed that optical properties such as transmittance in the short-wavelength region and chromaticity were remarkably improved due to the index matching effect in the ITO thin film with the Nb2O5/SiO2 double buffer layer.

An Theoretical Analysis of Electro-osmotic Flow in 2-dimensional slit with Electrical Double Layers in Interaction (전기 이중층의 상호작용을 고려한 2차원 슬릿 내의 전기삼투 유동에 관한 이론적 해석)

  • Lee, Dae-Keun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.497-500
    • /
    • 2006
  • An theoretical analysis on the electro-osmotic flow in a 2-dimensional slit, that is induced by an external electric field acting on the electrical double layers near the slit wall, was performed. Especially, although there were many studies on the interacting electrical double layers, it was found in this study that they have several physical or mathematical fallacies. To resolve these, the general solution on the charge-regulating slit with the height as a parameter was obtained. The results of this work can provide the electrokinetic solution of nanoscale slit with the electrical double layer interaction as well as that of microscale slit without the interaction and can be used as the benchmark of a numerical analysis and the reference of electrokinetic flow path design.

  • PDF

Effect of Additional Ag Layer on Corrosion Protection of Cu-Electrodeposited AZ31 Mg Alloy

  • Phuong, Nguyen Van;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.97-97
    • /
    • 2017
  • This study investigated the corrosion protection by electrodeposited copper layer on AZ31 Mg alloy with and without additional silver layer by immersion test, salt spray test, OCP transient and potentiodynamic polarization experiment. The single electrodeposited Cu layer on AZ31 Mg alloy showed a nodular structure with many imperfections of crevices between the nodules, which resulted in the fast initiation of pitting corrosion within first few hours of immersion. Double-layer coating of Cu and outer Ag layer slightly increased the initiation time for pitting corrosion. Triple-layer coatings of Cu/Ag/Cu exhibited the most efficient corrosion protection of AZ31 Mg alloy, compared to the single- and double-layer coatings. Surface morphology of the outer Cu layer in the triple-layer was changed from the nodular structure to fine particle structure with no crevices due to the presence of an additional Ag layer. Thus, the improved corrosion resistance of AZ31 Mg alloy by electrodeposited Cu/Ag or Cu/Ag/Cu layers is readily ascribed to the decreased number of imperfections in the electrodeposited layers due to the additional silver layer. It is concluded that the additional silver layer provides many nucleation sites for the second Cu plating, resulting in the formation of finer and denser structure than the first Cu electrodeposit.

  • PDF

A Study on the Properties of $Al_2$ $O_3$ and $Al_2$ $O_3$/( $Ti_{0.5}$ $Al_{0.5}$)N Coatings Produced by Plasma Enhanced Chemical Vapor Deposition (플라즈마 화학 증착법에 의한 $Al_2$ $O_3$ 단층피막과 $Al_2$ $O_3$/( $Ti_{0.5}$ $Al_{0.5}$)N 이중피막의 제조 및 특성에 관한 연구)

  • 손경석;이승훈;이동각;임주완;이후철;이정중
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.2
    • /
    • pp.105-114
    • /
    • 2001
  • $Al_2$$O_3$ coatings were deposited on M2 high speed steels by the plasma enhanced chemical vapor deposition (PECVD) process, using a gas mixture of AlC1$_3$, $H_2$, $CO_2$ and Ar $Al_2$$O_3$ coatings had interference color and showed amorphous phase. $A1_2$X$A1_3$/($Ti_{0.5}$ /$Al_{0.5}$ )N double layer coatings were produced in the sequence of substrate $NH_3$ plasma pretreatment, ($Ti_{0.5}$$Al_{0.5}$)N depoition process, $Al_2$$O_3$ deposition process. $Al_2$ $O_3$/( $Ti_{0.5}$A $l_{0.5}$)N double layer coatings showed NaCl structure in ( $Ti_{0.5}$A $l_{0.5}$)N layer and amorphous phase in A1$_2$ $O_3$ layer. It was shown that $Al_2$ $O_3$ columns continuously grew onto ( $Ti_{0.5}$A $l_{0.5}$)N columns. ( $Ti_{0.5}$A $l_{0.5}$)N single coating and $Al_2$ $O_3$/( $Ti_{0.5}$A $l_{0.5}$)N double layer coating were oxidized at $700^{\circ}C$, 80$0^{\circ}C$, 90$0^{\circ}C$ for 1hr, 3hr in atmosphere. At 80$0^{\circ}C$, single layer coatings were oxidized, which were examined substrate oxide particle. But $Al_2$ $O_3$/ ( $Ti_{0.5}$A $l_{0.5}$)N double layer coatings maintained the asdeposited state. Therefore, $Al_2$ $O_3$/ ( $Ti_{0.5}$A $l_{0.5}$)N double layer coatings have moreexcellent oxidation resistance than ( $Ti_{0.5}$A $l_{0.5}$)N single layer coatings.X> 0.5/)N single layer coatings.s.

  • PDF

A Study on the Effect of Mid Layer on Supersonic 2D Double Shear Layer (초음속 2차원 2단 혼합층에서 중간층의 역할)

  • Kim, Dongmin;Baek, Seungwook
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.9-17
    • /
    • 2015
  • The basic flow configuration is composed of a plane, double shear layer where relatively thin mid gas layer is sandwiched between air and fuel stream. The present study describes numerical investigations concerning the combustion enhancement according to a variation of mid layer thickness. In this case, the effect of heat release in turbulent mixing layers is important. For the numerical solution, a fully conservative unsteady $2^{nd}$ order time accurate sub-iteration method and $2^{nd}$ order TVD scheme are used with the finite volume method including k-${\omega}$ SST model. The results consists of three categories; single shear layer consists of fuel and air, inert gas sandwiched between fuel and air, cold fuel gas sandwiched between fuel and air. The numerical calculations has been carried out in case of 1, 2, 4 mm of mid layer thickness. The height of total gas stream is 4 cm. The combustion region is broadened in case of inert gas layer of 2, 4 mm thickness and cold fuel layer of 4 mm thickness compared with single shear layer.

Study on the Wear Resistant Characteristics of Medium Carbon Alloy Steel Plasma-Nitrided (플라즈마 질화처리된 중탄소합금강의 내마모특성에 관한 연구)

  • Cho, H.S.;Roh, Y.S.;Shin, H.K.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.4
    • /
    • pp.215-223
    • /
    • 1992
  • This study has been performed to investigate into some effects of temperature, gas mixing ratio and time on the optical microstructure, hardness and wear characteristics of medium carbon alloy steel treated by plasma nitriding. The results obtained from the experiment are summarized as follows: (1) Optical micrographs of AISI 4140 steel plasma-nitrided by the double stage technique have revealed that the nitrided layer is composed of the compound layer and the diffusion layer. The variation in temperature at the first stage gives effects, on the formation of compound layer and the growth rate is shown to be relatively fast at $460^{\circ}C$. (2) The thickness of compound layer has been found to increase with increasing nitrogen percentage in the gas mixture and the holding time. It is therefore recommended that a shorter holding time and a lower nitrogen percentage are more effective to produce a tougher compound layer and a diffusion layer only. (3) X-ray diffraction analysis for AISI 4140 steel has shown that the compound layer consist of ${\gamma}^{\prime}-Fe_4N$ and ${\alpha}-Fe$ and that tough compound layer diffustion layer only can be obtained by the double stage plasmanitriding process. (4) There is also a tendency that the total hardened layer depth increases with increasing temperature, time and nitrogen percentage in the first stage during the double stage plasma nitriding. (5) The wear resistance of plasma nitrided specimens has been found thobe considerably increased compared to the untreated specimens and the amount of increment has appeared to increase further with increasing nitriding temperature, holding time and notrogen percentage of gas mixture in the first stage treatment.

  • PDF

A Comparative Study on the Buckling Characteristics of Single-layer and Double-layer Lattice Dome According to Rise ratio (라이즈비에 따른 단층 및 복층 래티스 돔의 좌굴특성에 관한 비교연구)

  • 권영환;정환목;석창목;박상훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.283-289
    • /
    • 1998
  • In the latticed domes which is a set of space frame, buckling is derived if the external force reaches a limitation by the lightness of the material and the minimization of the member section area. these are concerned with a geometric shape, network pattern, the number of layer, and so on. Most of all, the number of layer of the lattice dome is a important factor from the viewpoint of initial and structure design. Therefore this study compared buckling characteristics of single-layer with double-layer latticed domes and investigated the relativity of buckling-stress-ratio and member-density-ratio according to rise ratio to improve that designers could extend the range of .design selection

  • PDF

Passivation Layer Structures with a Silicon Nitride film (질화실리콘막을 사용한 표면보호층 구조에 관한 연구)

  • 이종무
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.6
    • /
    • pp.53-57
    • /
    • 1985
  • Comparisons and analyses were made of the properties of double or triple passivation layer structures composed of APCVD SiOt or PSG and PECVD SiN films with various layer combinations and layer thicknesses. As a result of the analyses of the pro.peHics such as threshold-voltage shift, crack resistance, pinhole density, and moisture reslstancei a con-clusion was reached that the proper passivation layer structure is the double layer consisting of a 4,00$\AA$ or thicker PSG film and a 6,000$\AA$ SiN film.

  • PDF

Double-Diffusive Convection Due to Heating from Below in a Rotating Cylindrical Cavity (회전하는 원통형밀폐용기내의 아랫면가열에 의한 이중확산대류에 관한 실험적 연구)

  • 강신형;이태홍;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1731-1740
    • /
    • 1995
  • Experimental investigations have been made to study the double-diffusive nature of convection of an initially stratified salt-water solution due to heating from below in a rotating cylindrical cavity. The objective is to examine the flow phenomena and the heat transfer characteristics according to the changes in temperature gradient, concentration gradient and rotating velocity of cavity. Thermal and solutal boundary conditions at side wall are adiabatic and impermeable, respectively. The top and bottom plate are maintained each at constant temperature and concentration. The cavity is put into a state of solid body rotation. Like the stationary case, the types of initially-formed flow pattern are classified into three regimes depending on the effective Rayleigh number and Taylor number; stagnant flow regime, single mixed-layer flow regime and successively formed multi-mixed layer flow regime. At the same effective Rayleigh number, the number of initially-formed mixed layer and its growth rate decrease as the effect of rotation increases. The temperature and concentration profiles are both uniform in each layer due to convective mixing in the layered-flow regime, but look both liner in stagnant flow regime and single mixed-layer flow regime. At the interface between adjacent layers, the temperature changes smoothly but the concentration changes rapidly.

Characteristics of Rh- Pd- Pt Three-Way Catalysts with Double-Layer Washcoat on the Hydrothermal Aging (이중층 워시코트 Rh-Pd-Pt 삼원촉매의 열적 열하에 따른 반응 특성)

  • Choi Byungchul;Jeong Jongwoo;Son Geonseog;Jung Myunggun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.8-16
    • /
    • 2006
  • The research was conducted to characterize of Rh-Pd-Pt TWC with a double-layer washcoat for gasoline vehicle. The physical characteristics on surface of catalyst were inspected by BET, SEM and TEM. The characteristics of catalytic reaction were examined by the TPD/TPR and CO-pulse chemisorption. The catalyst $6Hx(0.35\times11\times3)$ showed superior conversion performance after hydrothermal aging process, which was due to small difference of the surface area between. the fresh and the aged catalyst. The CO-chemisorption and surface area were superior in the 600 cpsi catalyst than other catalysts, this catalyst also shown the higher conversion efficiency of the exhaust emissions. From the TPR test, the conversion performance of the aged catalyst was decreased by the agglomeration and sintering of the PM and metal oxides. From the TPD result, it was found that the NO chemisorption was happed on the bottom-layer washcoat with Pd, and the NO chemisorption was re-happened on the upper-layer washcoat with Pt and Rh in the desorption process.