• 제목/요약/키워드: Double tube heat exchanger

검색결과 65건 처리시간 0.025초

이중입구 맥동관냉동기의 수치적 해석 (Numerical Analysis of a Double Inlet Pulse Tube Refrigerator)

  • 채왕병;정은수;최헌오
    • 설비공학논문집
    • /
    • 제7권3호
    • /
    • pp.501-511
    • /
    • 1995
  • A numerical model for predicting the performance of gas distrubutor type double inlet pulse tube refrigerators has been developed. The model was based on adiabatic analysis and the losses of heat exchangers and regenerator were considered. Thermodynamic behavior of working fluid within a double inlet pulse tube refrigerator was investigated and the effects of design parameters, such as valve and orifice openings, cold heat exchanger temperature, frequency and pulse tube length, on the cooling capacity and COP were shown.

  • PDF

GSHP용 수직형 지중열교환기의 열전달 성능에 관한 연구 (A Study on Heat Transfer Performance of Vertical Ground Heat Exchanger of GSHP(Ground Source Heat Pump))

  • 정민호;장기창;나호상;백영진;박성룡;유성연
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2102-2107
    • /
    • 2007
  • GSHP systems are used for air-conditioning systems in commercial buildings, schools, and factories because of low operating and maintenance costs. These systems use the earth as a heat source in heating and a heat sink in cooling mode. Ground heat exchangers are classified by a horizontal and vertical type according to the installation method. Vertical type is usually constructed by placing small diameter high density polyethylene tube in a vertical borehole. Vertical tube sizes range from 20 to 40 mm nominal diameter. Borehole depth range between 100 and 200 m depending on local drilling conditions and available equipment. In this study, to evaluate the performance of single u-tube with bentonite grouting, single u-tube with broken stone grouting and double u-tube bentonite grouting of vertical ground heat exchangers, test sections are buried on the earth and experimental apparatus is installed. Therefore the heat transfer performance and pressure loss of these are estimated.

  • PDF

초고온가스로의 동심축 이중관형 고온가스덕트에 대한 구조정산 방법론 제안 (Suggestion of Structural Sizing Methodology on a Coaxial Double-tube Type Hot Gas Duct for the VHTR)

  • 송기남;김용완
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.717-724
    • /
    • 2008
  • Very High Temperature Gas Cooled Reactor (VHTR) has been selected as a high energy heat source for nuclear hydrogen generation, which can produce hydrogen from water or natural gas. A primary hot gas duct (HGD) as a coaxial double-tube type cross vessel is a key component connecting the reactor pressure vessel and the intermediate heat exchanger for the VHTR. In this study, structural sizing methodology for the primary HGD with a coaxial double-tube of the VHTR that produces heat at temperatures in the order of $950^{\circ}C$ was suggested and a structural pre-sizing of it was carried out as an example.

  • PDF

세관을 이용한 Tube-in-Tube 열교환기내 R-22, R-407C 및 R-410A 응축열전달 특성 (Condensation Heat Transfer Characteristics of Tube-in-Tube Heat Exchanger using Small Diameter Tubes with R-22, R-407C and R-410A)

  • 박우종;최광일;박기원;오종택
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.657-662
    • /
    • 2006
  • The present paper dealt with an experimental study of condensation heat transfer coefficients with refrigerant R-22, R-407C and R-410A, and was focused on pressure gradient and heat transfer coefficient in horizontal tube-in-tube heat exchangers using inner diameter of 4 mm, 3 mm and 2 mm in a 16.91 mm tube and length of 3,000 mm. Experiments were performed at inlet saturation temperature of 35 to $45^{\circ}C$ and mass flux ranges from 200 to $600 kg/m^2s$. The pressure gradient with inner tube diameter of 4.0 mm is higher 2.5 times than that of 8.0 mm. In tube-in-tube HEX, the pressure gradient of R-410A were lower than those of R-22 and R-407C. The condensation heat transfer coefficients increased with mass flux increase, but they decreased with saturation temperature increased. Condensation heat transfer coefficients of R-410A were a little higher than those of R-22 and R-407C. The condensation heat transfer coefficients of tube-in-tube HEX were about 40% higher than those of double tube HEX.

  • PDF

수평관내 HC계 냉매의 증발 압력강하 특성 (Characteristics on Evaporating Pressure Drop of HCs Refrigerants inside a horizontal tube)

  • 최준혁;이호생;김재돌;윤정인
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.63-64
    • /
    • 2006
  • Chracteristics on evaporating pressure drop of HCs refrigerants inside a horizontal tube were studied experimentally. Experimental results were presented for pressure drops of hydrocarbon refrigerants R-290, R-600a, R-1270 and HCFC refrigerant R-22 inside a horizontal double pipe heat exchanger. Three tubes with a tube diameter of 12.70mm, 9.52mm and 6.35mm were used for this study. Hydrocarbon refrigerants showed higher evaporating pressure drop than that of R-22 in all tubes. The highest pressure drop was founded in R-600a. The highest evaporating perssure drop of all refrigerants was shown in a tube diameter of 6.35mm with same mass flux. The results can be used as the basic data for the design of heat exchanger using hydrocarbon refrigerants as an alternatives.

  • PDF

입자층(粒子層)을 이용(利用)한 열교환기(熱交換器) 개발(開發)에 관(關)한 연구(硏究)(II) - 유동층형(流動層形) 이중관식(二重管式) 열교환기(熱交換器)의 전열특성(傳熱特性)에 대한 실험적(實驗的) 연구(硏究)(병행류식(竝行流式)) (Development of a Particle Bed Heat Exchanger(II) -An Experimental Study on Heat Transfer Characteristics of Fluidized Bed Heat Exchanger with Double Pipe (Parallelflow))

  • 김광철;류지오;양한주;서정윤
    • 설비공학논문집
    • /
    • 제2권2호
    • /
    • pp.127-136
    • /
    • 1990
  • Air-solid bed has been known to be an effective heat transfer augmentation device which could be applied to heat exchangers. In this study, pressure drop and heat transfer characteristics of vertical annular fluidized bed heat exchanger with air flowing through were studied experimentally. The experiments was conducted to calculate overall heat transfer coefficient on fluidized bed heat exchangers immersed single vertical tube and investigate minimum fluidized velocity in fluidized bed of alumina beads and steel balls. The influence of flow direction, particle diameter, the heights of static bed and air mass fluidizing velocity has been examined. The experimental results showed the optimum operating condition and effective static bed height for fluidized bed heat exchangers. For the same power loss, comparisions of heat transfer effect between the fluidized bed heat exchanger and the single phase forced convetion heat exchanger indicate that both miniaturization of heat exchanger and heat transfer augmentation at low flow velocity are possible by application of the air-solid to heat exchangers.

  • PDF

GHP 배열회수용 이중 쉘-튜브형 배기가스 열교환기의 설계 최적화 (Design Optimization of Dual-Shell and Tube Heat Exchanger for Exhaust Waste Heat Recovery of Gas Heat Pump)

  • 이진우;신광호;최송;정백영;김병순
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제3권1호
    • /
    • pp.23-28
    • /
    • 2015
  • 본 논문은 GHP 에 사용되고 있는 이중 쉘-튜브형 배기가스 열교환기의 설계 변수의 변화에 따라 열전달 및 마찰특성 변화를 알아보기 위해 CFD 와 RSM 을 이용하여 최적화를 수행하였다. CFD 해석은 복잡한 형상의 열교환기 해석에 유용한 도구이나, 해석결과를 얻기까지 많은 시간이 소요된다. 이러한 해석시간을 줄이고, 유용한 결과를 얻기 위해 RSM 과 병행하여 최적화 설계를 진행하였다. 시뮬레이션 결과를 이용한 RSM 해석결과, 배플 6 개, 튜브 25 개에서 최적화되었으며, 기존 보다 차압 및 열전달 성능이 약 12.2% 개선되었다. 이러한 CFD 와 RSM 을 이용한 최적화 기법은 다양하고 복잡한 형상의 열교환기 해석에 유용함을 확인하였다.

수소생산용 원자로에서 동심축 이중관형 1차 고온가스덕트의 예비 구조정산 (Preliminary Structural Sizing of the Co-axial Double-tube Type Primary Hot Gas Duct for the Nuclear Hydrogen Reactor)

  • 송기남;김용완
    • 한국압력기기공학회 논문집
    • /
    • 제4권2호
    • /
    • pp.1-6
    • /
    • 2008
  • Very High Temperature Gas Cooled Reactor (VHTR) has been selected as a high energy heat source for nuclear hydrogen generation. The VHTR can produce hydrogen from heat and water by using a thermo-chemical process or from heat, water, and natural gas by steam reformer technology. A co-axial double-tube primary hot gas duct (HGD) is a key component connecting the reactor pressure vessel and the intermediate heat exchanger (IHX) for the VHTR. In this study, a preliminary design analysis for the primary HGD of the nuclear hydrogen system was carried out. These preliminary design activities include a determination of the size, a strength evaluation and an appropriate material selection. The determination of the size was undertaken based on various engineering concepts, such as a constant flow velocity model, a constant flow rate model, a constant hydraulic head model, and finally a heat balanced model.

  • PDF

지열원 물대공기 멀티 히트펌프의 냉방 운전 특성에 관한 실증 연구 (Verification Experiment of a Ground Source Multi-heat Pump at Cooling Mode)

  • 최종민;강신형;최재호;임효재;문제명;권영석;권형진;김록희
    • 설비공학논문집
    • /
    • 제21권5호
    • /
    • pp.297-304
    • /
    • 2009
  • The aim of this study is to investigate the cooling performance of ground source multi-heat pump systems with a vertical single U-tube GLHX(U-tube system) and a vertical double tube GLHX(double tube system), which were installed in a school building located in Cheonan. All systems were operated in a part load conditions for all day, and the maximum COP of the single U-tube system and the double tube system were 6.2 and 5.2 at cooling mode, respectively. The double tube GLHX designed by the GLHEPRO, commercial program, was estimated to have the same performance as the U-tube GLHX, because the inlet temperatures of each outdoor unit heat exchanger for the former was similar to the latter. However, it is needed to prove the long tenn performance. It is suggested that the new algorithms to control the flow rate of secondary fluid for GLHX according to load variation have to be developed in order to enhance the performance of the system.

2중 관형 열교환기내 비공비혼합냉매 R-22+R134a의 응축열전달 특성에 관한 연구 (Condensation Heat Transfer Characteristics of Non-Azeotropic Refrigerant Mixture(NARMs) Inside Double Pipe Heat Exchangers)

  • 노건상;오후규;권옥배
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.91-100
    • /
    • 1996
  • Experimental results for forced convection condensation of non-azeotropic refrigerant mixtures inside a horizontal smooth tube are presented. The mixtures of R-22+R-134a and pure refrigerants R-22 and R-134a are used as the test fluids and a double pipe heat exchanger of 7.5mm ID and 4800mm long inside tube is used. The range of parameters are 100-300kg/h of mass flow rate, 0-1.0 of quality, and 0, 33, 50, 67, and 100 weight percent of R-22 mass fraction in the mixtures. The heat flux, vapor pressure, vapor temperature and tube wall temperature were measured. Using the data, the local and average heat transfer coefficients for the condensation have been obtained. In the same given experimental conditions, the liquid heat transfer coefficients for NARMs were considerally lower than that of the pure refrigerant of R-22 and R-134a. Local heat transfer characteristics for NARMs were different from pure refrigerant R-22 and R-134a. In some regions, local heat transfer coefficients for NARMs were increased in the following order ; Bottom$\rightarrow$Top$\rightarrow$Side. The condensation heat transfer coefficients for NARMs increased with mass velocity, heat flux, and quality, but were considerably lower than that of pure refigerant R-22 and R-134a.

  • PDF