• 제목/요약/키워드: Double transgenic

검색결과 39건 처리시간 0.031초

제초제 저항성 유전자에 의한 인삼의 형질전환 (Genetic Transformation of Panax ginseng with Herbicide Resistant Gene)

  • 양계진
    • 식물조직배양학회지
    • /
    • 제28권6호
    • /
    • pp.353-357
    • /
    • 2001
  • 인삼의 자엽과 callus에 Biolistic system을 이용한 비선택성 제초제인 bialaphos에 대한 내성을 갖게 하는 PAT 유전자의 형질전환효율 향상 및 형질전환체의 유전분석에 관한 실험을 수행하였다. 자엽의 경우에는 형질전환율이 약했지만 callus의 경우에는 target distance 9 cm, rupture disk-macro-carrier gap distance를 1/3"로 했을 때 가장 양호한 형질전환 결과를 보였다. 형질전환된 인삼식물체에서 PAT 및 NPT 유전자의 존재 여부를 확인하기 위해서 PCR을 수행한 결과 정상 식물체서는 전혀 PCR product가 형성되지 않은 반면 형질전환체 모두에서 PAT (약 300 bp)와 NPT (약 800 bp) 유전자의 band를 확인하여 각각의 유전자가 삽입되어 PAT 및 NPT IIgene이 도입된 형질전환체임을 확인할 수 있었다. 있었다.

  • PDF

Presence of Transgenic Genes and Proteins in Commercial Soybean Foods from Mexican Grocery Stores

  • Cruz-Flores, Yendi Arely;Rodriguez-Herrera, Raul;Aguilar-Gonzalez, Cristobal Noe;Contreras-Esquivel, Juan Carlos;Reyes-Vega, Maria de la Luz
    • Food Science and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.1092-1096
    • /
    • 2008
  • Commercial food products from major cities of Coahuila, Mexico were screened to identify residues of transgenic deoxyribonucleic acid (DNA) and/or proteins. After performed, an inventory on all products that contained a soybean-based ingredient in a commercial grocery store in the city of Saltillo, Coahuila, Mexico, 245 food products were identified and grouped in 15 classes according to the soybean ingredient as well as the manufacturing process used for their elaboration. Similar sampling was made for the different food classes in the cities of Monclova, Piedras Negras, and Torreon. A total of 88 samples were analyzed and DNA was extracted by the hexadecyltrimethyl-ammonium bromide (CTAB) technique with slight modification to obtain better DNA quality (1). In addition, segments of the transgenic genes one that codifies for 5-enolpyruvylshikimate-3-phosphate synthase (epsps), cry 1A, and the cauliflower mosaic virus (CaMV) promoter were amplified using polymerase chain reaction (PCR). The transgenic proteins 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) and insecticidal crystal protein (Cry 1Ab/Ac) were identified using double antibody sandwich-enzymatic linked immunoassay analysis (DAS-ELISA). Presence of transgenic genes and/or proteins was identified in 35.3% of the commercial products samples.

Enhanced Delivery of siRNA Complexes by Sonoporation in Transgenic Rice Cell Suspension Cultures

  • Cheon, Su-Hwan;Lee, Kyoung-Hoon;Kwon, Jun-Young;Choi, Sung-Hun;Song, Mi-Na;Kim, Dong-II
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권8호
    • /
    • pp.781-786
    • /
    • 2009
  • Small interfering synthetic double-stranded RNA (siRNA) was applied to suppress the expression of the human cytotoxic-T-Iymphocyte antigen 4-immunoglobulin (hCTLA4Ig) gene transformed in transgenic rice cell cultures. The sequence of the 21-nucleotide siRNA was deliberately designed and synthesized with overhangs to inactivate the expression of hCTLA4Ig. The chemically synthesized siRNA duplex was combined with polyethyleneimine (PEl) at a mass ratio of 1:10 (0.33 ${\mu}g$ siRNA:3.3 ${\mu}g$ PEl) to produce complexes. The siRNA complexes (siRNA+PEI) were labeled with Cy3 in order to subsequently confirm the delivery by fluorescent microscopy. In addition, the cells were treated with sonoporation at 40 kHz and 419W for 90 s to improve the delivery. The siRNA complexes alone inhibited the expression of hCTLA4Ig to 45% compared with control. The siRNA complexes delivered with sonoporation downregulated the production of hCTLA4Ig to 73%. Therefore, we concluded that the delivery of siRNA complexes into plant cells could be enhanced successfully by sonoporation.

Single Somatic Embryogenesis from Transformant with Proteinase II Gene in Panax ginseng C.A. Meyer

  • Yang, Deok-Chun;Kim, Se-Young;Rho, Yeong-Deok;Kim, Moo-Sung
    • Plant Resources
    • /
    • 제6권3호
    • /
    • pp.205-210
    • /
    • 2003
  • Ginseng(Panax ginseng C.A. Meyer) is a perennial herbaceous plant which grows very slowly. It takes about 3 to 4 years from seeding to collecting the ripe seeds and the ginseng propagation is very difficult. and so, it is very difficult to breed ginseng plant. Ginseng tissue culture was started from at 1960, and ginseng commercial product by in vitro callus culture was saled, however upto now, regenerants were not planted to soil normally. Recently, plant genetic engineering to produce transgenic plants by introducing useful genes has been advanced greatly. In a present paper, transformation of ginseng plants was achieved by co-cultivation with Agrobacterium harboring the binary vector coding Proteinase-II gene, which confer resistant or tolerant to insect pests, The binary vector for transformation was constructed with disarmed Ti-plasmid and with double 35S promoter. The NPT II gene and introduced genes of the transgenic ginseng plants were successfully identified by the PCR. Especially the transgenic ginseng plants were regenerated using new techniques such as repetitive single somatic embryogenesis.

  • PDF

Over-Expression of Ephrin-A5 in Mice Results in Decreasing the Size of Progenitor Pool through Inducing Apoptosis

  • Noh, Hyuna;Park, Soochul
    • Molecules and Cells
    • /
    • 제39권2호
    • /
    • pp.136-140
    • /
    • 2016
  • Eph receptors and their ligands, ephrins, mediate cell-to-cell contacts in a specific brain region and their bidirectional signaling is implicated in the regulation of apoptosis during early brain development. In this report, we used the alpha(${\alpha}$)-Cre transgenic line to induce ephrin-A5 over-expression in the distal region of the neural retina. Using this double transgenic embryo, we show that the over-expression of ephrin-A5 was responsible for inducing massive apoptosis in both the nasal and temporal retinas. In addition, the number of differentiated retinal neurons with the exception of the bipolar neuron was significantly reduced, whereas the laminar organization of the mature retina remained intact. Consistent with this finding, an analysis of the mature retina revealed that the size of the whole retina-particularly the nasal and temporal regions-is markedly reduced. These results strongly suggest that the level of ephrin-A5 expression plays a role in the regulation of the size of the retinal progenitor pool in the neural retina.

Activation Mechanism of Protein Kinase B by DNA-dependent Protein Kinase Involved in the DNA Repair System

  • Li, Yuwen;Piao, Longzhen;Yang, Keum-Jin;Shin, Sang-Hee;Shin, Eul-Soon;Park, Kyung-Ah;Byun, Hee-Sun;Won, Min-Ho;Choi, Byung-Lyul;Lee, Hyun-Ji;Kim, Young-Rae;Hong, Jang-Hee;Hur, Gang-Min;Kim, Jeong-Lan;Cho, Jae-Youl;Seok, Jeong-Ho;Park, Jong-Sun
    • Toxicological Research
    • /
    • 제24권3호
    • /
    • pp.175-182
    • /
    • 2008
  • DNA-dependent protein kinase(DNA-PK) is involved in joining DNA double-strand breaks induced by ionizing radiation or V(D)J recombination and is activated by DNA ends and composed of a DNA binding subunit, Ku, and a catalytic subunit, DNA-PKcs. It has been suggested that DNA-PK might be $2^{nd}$ upstream kinase for protein kinase B(PKB). In this report, we showed that Ser473 phosphorylation in the hydrophobic-motif of PKB is blocked in DNA-PK knockout mouse embryonic fibroblast cells(MEFs) following insulin stimulation, while there is no effect on Ser473 phosphorylation in DNA-PK wild type MEF cells. The observation is further confirmed in human glioblastoma cells expressing a mutant form of DNA-PK(M059J) and a wild-type of DNA-PK(M059K), indicating that DNA-PK is indeed important for PKB activation. Furthermore, the treatment of cells with doxorubicin, DNA-damage inducing agent, leads to PKB phosphorylation on Ser473 in control MEF cells while there is no response in DNA-PK knockout MEF cells. Together, these results proposed that DNA-PK has a potential role in insulin signaling as well as DNA-repair signaling pathway.

유전자총을 이용한 팔레놉시스 형질전환 효율향상에 삼투압 조절제 및 발사횟수차이가 미치는 영향 (Effects of osmoticum treatments and shooting chances on the improvement of particle gun-mediated transformation in Phalaenopsis)

  • 노희선;김종보
    • Journal of Plant Biotechnology
    • /
    • 제41권4호
    • /
    • pp.216-222
    • /
    • 2014
  • 본 연구는 팔레놉시스의 원괴체유사체를 재료로 효율적인 형질전환 체계를 확립하기 위해 수행되었다. 이를 위해 PPT 제초제에 저항성을 가지는 bar 선발유전자와 노화지연 형질을 보이는 ORE 7 유전자를 함유하는 pCAMBIA 3301:ORE7 벡터를 이용하여 유전자총 형질전환 시 발사횟수 증가 그리고 유전자총 실험 전후에 삼투압조절제 처리를 하여 실험목적을 달성하고자 하였다. 실험결과, 2회 발사처리가 1회나 3회 발사횟수와 비교하여 1.5 ~ 2.5배 이상의 형질전환 효율을 보여 주었으나, 신초 재분화율이 낮고 갈변율은 높은 현상을 보여 주었다. 다양한 삼투압 조절제 처리에 의한 형질전환효율 향상 실험에선 0.2 M mannitol과 0.2 M sorbitol 이 2가지 조절제 혼합처리가 단용처리나 무처리구에 비해 형질전환 효율과 신초재 분화율에서 최소 1.5 ~ 3배 이상의 효율을 보여 주었고, 갈변율도 2배 이상 낮게 나타났다. PCR 분석을 통하여 bar 유전자와 ORE7 유전자가 도입되었음을 확인하였고, 임의로 선발한 형질전환 팔레놉시스 21개체를 대상으로 real-time PCR 분석을 통해 4개체가 1 copy의 목적유전자를 가지고 있으며, 나머지 17 개체들은 2 copy 이상의 유전자를 보유하고 있음이 밝혀졌다. 본 연구에서 생산된 형질전환 팔레놉시스 개체들은 순화과정을 거쳐 화분으로 이식하여 생육과정을 거쳐 꽃이나 잎에 변이가 없는 개화과정을 보여 주었다.

고 함량 트립토판 생산 GM 벼 개발 및 전사체 분석 (Development of high tryptophan GM rice and its transcriptome analysis)

  • 정유진;;조용구;강권규
    • Journal of Plant Biotechnology
    • /
    • 제42권3호
    • /
    • pp.186-195
    • /
    • 2015
  • Anthranilate synthase (AS)는 트립토판(Trp)과 indole-3-acetic acid, indole alkaloids의 생합성 경로에서 중요한 효소로 작용한다. 트립토판 생합성 상에서 feedback inhibition에 민감하게 반응하는 AS alpha-subunit 관련 OASA2 유전자 영역의 single (F124V) 및 double (S126F/L530D) 점돌연변이로 변형된 유전자의 재조합운반체를 작성하고 이들 유전자들을 Agrobacterium 방법으로 동진벼에 도입하여 형질전환체를 육성하였다. Single 및 double 돌연변이 OsASA2 유전자가 도입된 형질전환 벼 계통들은 nos gene probe를 이용한 TaqMan PCR 방법으로 single copy를 선발하였고, intergenic 계통을 선발하기 위해서 Bfa I 제한효소를 이용하여 RB와 LB 인접서열로부터 IPCR을 통한 FST 분석을 수행하여 4 개의 intergenic 계통을 선발하였다. 도입된 유전자의 발현으로 형질전환 벼는 Trp, IAN 및 IAA가 잎에 가장 많이 축적되었고, 종자의 트립토판 함량도 증가되었다. 후대에서 tryptophan 함량이 높은 S-TG와 D-TG의 두 호모 이벤트 계통을 육성하여 트립토판 함량을 분석한 결과 대조구에 비하여 13~30배 이상 높게 나타났으며, 유리아미노산의 함량도 증가하였다. 이벤트 계통을 이용하여 microarray 분석을 수행한 결과 세포 내 이온 수송, 영양분 공급 등에 영향을 주는 유전자군들이 up-regulation 되었고, 세포 내 기능유전자의 역할을 담당하는 조효소 등이 down-regulation 된 것을 확인 할 수 있었다. 이러한 결과는 선발된 두개의 상동성 이벤트 계통들이 고함량의 유리 트립토판 생산 벼의 육종에 효과적으로 이용될 수 있음을 보여준 결과로 생각된다.

식물 대사공학에 의한 산업용 지방산 생산연구 현황 (Metabolic engineering for production of industrial oils in transgenic plants)

  • 이경렬;김현욱
    • Journal of Plant Biotechnology
    • /
    • 제36권2호
    • /
    • pp.97-105
    • /
    • 2009
  • Seed storage lipids of plants, essential for seed germination as energy supplier, have been used for humankind and animal as nutrition sources. Fatty acids of vegetable oils have the characters appropriate for industry based on their chain length, the position and the number of double bonds. So they are used as raw materials for lubricants, cosmetics, soaps, paints and plastics or as energy source such as bio-diesel. However, there is a limit that applies vegetable oils from typical oil crops for industrial uses, mainly because of the mixture of five common fatty acids. Therefore, identification of unusual fatty acids for industrial uses from diverse plant resources and metabolic engineering to produce unusual fatty acids have been carried out in Arabidopsis as a model for the study of oilseed biology. Here, we discuss the unusual fatty acids for industrial uses, the genes synthesizing them in lipid metabolism, and the current limits in production of transgenic plants accumulating unusual fatty acid in their seeds. In addition, we describe our work on metabolic engineering of Brassica napus for the production of the unusual fatty acid ricinoleic acid in the seed, because of its industrial uses.

Modification of amylose content of sweetpotato starch by RNAi technique

  • Shimada, Takiko;Otani, Motoyasu;Hamada, Tatsurou;Kim, Sun-Hyung
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2005년도 추계학술대회 및 한일 식물생명공학 심포지엄
    • /
    • pp.351-355
    • /
    • 2005
  • In the storage roots of sweetpotato (Ipomoea batatas (L.) Lam. cv. Kokei 14), 10 to 20% of starch is essentially unbranched linear amylose and the other major component is branched amylopectin. Amylose is produced by the enzyme GBSSI (granule bound starch synthase I), whereas amylopectin is produced by a concerted action of soluble starch synthase and starch branching enzymes (SBEI and SBEII). We constructed double-stranded RNA (dsRNA) interference vectors of GBSSI and IbSBEII and introduced them into sweetpotato genome via Agrobacterium-mediated gene transformation. The endogenous GBSSI expression was inhibited by dsRNA of GBSSI in 73 % of transgenic plants giving rise to the storage tubers containing amylopectin but not amylose. On the other hand, all sweetpotato plants transformed with dsRNA of IbSBEII contained a larger amount of amylose than the non-transgenic control (up to 25% compared to 10% in the controls). The RNA interference (RNAi) is effectively inhibited the gene expression in thestarch metabolic pathway and modified the characteristics of starch in sweetpotato.

  • PDF