• Title/Summary/Keyword: Double emitting layer

Search Result 71, Processing Time 0.027 seconds

Comparative Investigation on the Light Emitting Characteristics of OLED Devices with a Single Layer of Alq3 and a Double Layer of Rubrene/Alq3

  • Jeong, Geon-Su;Lee, Bung-Ju;Kim, Hui-Seong;;Sin, Baek-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.246.2-246.2
    • /
    • 2014
  • Green-light emitting OLED with single layer of Alq3 and orange-light emitting OLED with double layer of rubrene/Alq3 as EML were fabricated and characterized comparatively. The two OLED devices were based on an anode of ITO, HTL of TPD, and cathode of Al, respectively. The green light emitting OLED was then prepared with Alq3 as both ETL and EML, while the orange-light emitting OLED was prepared with rubrene deposited on Alq3. All the component layers of the OLED devices were deposited by a thermal evaporation technique in vacuum. Photoluminescence characteristics of the EML layers were investigated. Electrolumiscence characteristics of the OLED devices were comparatively investigated.

  • PDF

Synthesis of Conjugated Copolymers with phenothiazine and Azomethine Units and their Electro-Optic Properties

  • Seo, Hyeon-Jin;Jang, Byeung-Jo;Chang, Jin-Gyu;Park, Lee-Soon
    • Journal of Information Display
    • /
    • v.2 no.4
    • /
    • pp.8-14
    • /
    • 2001
  • Three types of conjugated polymers, poly(PZ-Pi), poly(PZ-BPI) and poly(PZ-NPI) were synthesized by Schiff-base reaction. These new conjugated polymers exhibited improved solubility in common organic solvents due to the presence of alkyl side chains as well as azomethine groups, Double layer LEDs made with the synthesized polymers as emitting layer and $Alq_3$, as electron transporting layer exhibited enhanced EL emission and efficiency compared to those of single layer LEDs. Double layer LEDs exhibited gradual shift in the emission peak th the single layer LED, made of only $Alq_3$ as the emitting layer as the thickness of $Alq_3$ layer increased.

  • PDF

Properties of Polymer Light Emitting Diodes Using PFO : MEH-PPV Emission Layer and Hole Blocking Layer (PFO : MEH-PPV 발광층과 정공 차단층을 이용한 고분자 발광다이오드의 특성)

  • Lee, Hak-Min;Gong, Su-Cheol;Shin, Sang-Bae;Park, Hyung-Ho;Jeon, Hyeong-Tag;Chang, Ho-Jung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.49-53
    • /
    • 2008
  • The yellow base polymer light emitting diodes(PLEDs) with double emission and hole blocking layers were prepared to improve the light efficiency. ITO(indium tin oxide) and PEDOT : PSS[poly(3,4-ethylenedioxythiophene) : poly(styrene sulfolnate)] were used as cathode and hole transport materials. The PFO[poly(9,9-dioctylfluorene)] and MEH-PPV[poly(2-methoxy-5(2-ethylhe xoxy)-1,4-phenylenevinyle)] were used as the light emitting host and guest materials, respectively. TPBI[Tpbi1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene] was used as hole blocking layer. To investigate the optimization of device structure, we prepared four kinds of PLED devices with different structures such as single emission layer(PFO : MEH-PPV), two double emission layer(PFO/PFO : MEH-PPV, PFO : MEH-PPV/PFO) and double emission layer with hole blocking layer(PFO/PFO : MEH-PPV/TPBI). The electrical and optical properties of prepared devices were compared. The prepared PLED showed yellow emission color with CIE color coordinates of x = 0.48, y = 0.48 at the applied voltage of 14V. The maximum luminance and current density were found to be about 3920 cd/$m^2$ and 130 mA/$cm^2$ at 14V, respectively for the PLED device with the structure of ITO/PEDOT : PSS/PFO/PFO : MEH-PPV/TPBI/LiF/Al.

  • PDF

Double Hole Transport Layers Deposited by Spin-coating and Thermal-evaporating for Flexible Organic Light Emitting Diodes

  • Chen, Shin Liang;Wang, Shun Hsi;Juang, Fuh Shyang;Tsai, Yu Sheng
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.741-744
    • /
    • 2007
  • The research applied the processes of spin-coating and thermal-evaporating in proper order to deposit the hole transport material N,N'-Bis(naphthalen-1-yl)- N,N'-bis(phenyl)-benzidine (NPB) on the ITO substrate to make flexible organic light emitting diodes (FOLED) with double hole transport layer.

  • PDF

Enhancement mechanisms of luminance efficiency in red organic light-emitting devices fabricated utilizing a double electron transport layer consisting of an Al-doped layer and an undoped layer

  • Choo, D.C.;Bang, H.S.;Ahn, S.D.;Lee, K.S.;Seo, S.Y.;Yang, J.S.;Kim, T.W.;Seo, J.H.;Kim, Y.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.513-516
    • /
    • 2008
  • The luminance efficiency of the red organic light-emitting devices fabricated utilizing a double electron transport layer (ETL) consisting of an Al-doped and an undoped layer was investigated. The Al atoms existing in the ETL acted as hole blocking sites, resulting in an increase in the luminance efficiency.

  • PDF

Effect of Ag Capping Layer on the Emission Characteristics of Transparent Organic Light-emitting Devices with Ca/Ag Double-layer Cathodes

  • Lee, Chan-Jae;Moon, Dae-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.1
    • /
    • pp.45-48
    • /
    • 2014
  • We have investigated the effects of an Ag capping layer on the emission characteristics of transparent organic light-emitting devices with Ca/Ag double-layer cathodes. The thickness of the Ag layer was varied from 10 to 30 nm, whereas the Ca was fixed to be a 10 nm in the Ca/Ag structure. The luminance and current efficiency on the cathode and anode sides are significantly dependent on the Ag thickness. For example, the current efficiency on the anode side increases from 8.4 to 11.7 cd/A, whereas, on the cathode side, it decreases from 3.2 to 0.2 cd/A as the Ag thickness increases from 10 to 30 nm. These changes in emission characteristics were investigated by measuring electroluminescence, transmission, and reflection spectra.

Improvement of Color Purity Using Hole Blocking Layer in Hybrid White OLED (Hole Blocking Layer 사용에 따른 하이브리드 백색 OLED의 색순도 향상에 관한 연구)

  • Kim, Nam-Kyu;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.837-840
    • /
    • 2014
  • Novel materials of $Zn(HPB)_2$ and Ir-complexes were respectively synthesized as blue or red emitting material. White Organic Light Emitting Diodes (OLED) were fabricated by using $Zn(HPB)_2$ for a blue emitting layer, Ir-complexes for a red emitting layer and $Alq_3$ for a green emitting layer. White OLED was fabricated by using double emitting layers of $Zn(HPB)_2$ and $Alq_3:Ir$-complexes, and hole blocking layer of BCP. We also varied the thickness of BCP. When the thickness of BCP layer was 5 nm, white emission was achieved. We obtained a maximum luminance of $3,500cd/m^2$. The CIE coordinates was (0.375, 0.331). From this study, we could propose that the hybrid structure is efficient in lighting application of white OLED by improvement of color purity.

Property analysis of multi layer Organic Light Emitting Diodes using equivalent circuit models (등가 회로 모델을 이용한 다층 유기발광 소자의 특성 분석)

  • Park, Hyung-Jun;Kim, Hyun-Min;Yi, Jun-Sin;Nam, Eun-Kyoung;Jung, Dong-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.119-120
    • /
    • 2006
  • The impedance spectroscopy is one of the effective ways to understand the electrical properties of organic light emitting diodes. The frequency-dependant properties of small molecule based OLEDs have been studied. The equivalent circuit of single-layer device is composed of contact resistance ($R_c$), bulk resistance ($R_p$) and bulk capacitance ($C_p$). The equivalent circuit of double layer device is composed of two parallel circuits connected in series, each of which is a parallel resistor and a capacitor. We have fabricated a double layer device indium-rio-oxide (ITO, anode), N,NV -diphenyl- N,NV -bis(3-methylphenyI)-1,1V -diphenyl-4,4V-diamine (TPD, hole-transporting layer), tris-(8-hydroxyquinoline) aluminum (Alq3, emitting layer), and aluminum (AI, cathode) and two single layer devices ([TO/ Alq3/ AI, ITO/TPD/AI).

  • PDF

A Study on the Emission Properties of Organic Electroluminescence Device by Various Stacked Organics Structures (유기물 적층 구조에 따른 유기 발광 소자의 발광 특성에 관한 연구)

  • 노병규;김중연;오환술
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.11
    • /
    • pp.943-949
    • /
    • 2000
  • In this paper, the single and double heterostructure organic light-emitting devices(OLEDs) were fabricated. The single heterostructure OLED(TYPE 1) is consisted of TPD as a HTL(hole transfer layer) and Alq$_3$as an EML(emitting layer). The double heterostructure OLED(TYPE 2) is consisted of TPD as a HTL, Alq$_3$as an EML and PBD as an ETL(electron transfer layer). The another double heterostructure OLED(TYPE 3) is consisted of TPD as a HTL, PBD as an EML and Alq$_3$as an ETL. We obtained a strong green emission device with maximum EL emission wavelength 500nm in TYPE 3. When the applied voltage was 12V, the emission luminescence was 120.9cd/㎡. The chromaticity index of TYPE 3 was x=0.29, y=0.50. In the characteristic plot of current-voltage, TYPE 3 device was turned on at 6.9V. This voltage was a fairly low turn-on voltage. TYPE 1 and 2 device were turned on at 10V and 8.9V respectively. These types showed no good properties over that of TYPE 3.

  • PDF

Light-emitting devices with polymer-organic heterostructure

  • Do, Lee-Mi;Hwang, Do-Hoon;Choi, Kang-Hoon;Lee, Hyang-Mok;Jung, Sang-Don;Zyung, Taehyoung
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.116-119
    • /
    • 1997
  • Highly quantum efficient and multi-color emissible polymer light emitting devices have been realized utilizing poly (1-dodecyloxy-4-methyl-1, 3-phenylene)(2, 5"-terthienylene)(hereafter, mPTTh polymer) as an emitting layer and tris(8-hydroxyquinoline) aluminum (Alq3) as an electron transport layer. A single layer EL device of mPTTh polymer emits orange-colored light. EL efficiency increases as the thickness of Alq3 layer increases, but the emission color becomes visually broad when the Alq3 layer thickness is greater than 30nm since the relative peak intensity of green EL from Alq3 layer grows. EL color is changed from orange to greenish orange as the thickness of Alq3 layer grows. EL color is changed from orange to greenish orange as the thickness of Alq3 layer increases. EL efficiency of the double layer device was greatly enhanced by 3000 times compared with that of a single layer device. Alq3 layer in device acts as a hole blocking electron transporting layer and an emitting layer as a function of the thickness of Alq3 layer.ayer.