• Title/Summary/Keyword: Double disruption

Search Result 31, Processing Time 0.021 seconds

Anti-dementia Effects of Gouteng-san and Si-Wu-Tang

  • Watanabe, Hiroshi
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.257-261
    • /
    • 2001
  • Recently, a traditional medicine called Gouteng-san, which consists of eleven herbs, was reported to be effective in treating vascular dementia with a double-blind, placebo-controlled study. Gout-eng-san is also used for patients with vascular dementia in combination with Si-Wu-Tang. The effect of Gouteng-san and Si-Wu-Tang on deficit of learning behavior was investigated using step-down passive avoidance task in mice. Hot-water extract of Gouteng-san (1.5 and 6 g/kg, p.o.) significantly prolonged the step-down latency shortened by scopolamine. The extract of Uncaria hook (150 mg/kg, p.o.), one of the component herb of Gouteng-san, significantly prevented the decrease in the latency after scopolamine. Hot-water extract of Si-Wu-Tang (1.5 and 6 g/kg of dried herbs, p.o.) prevented dose-dependently scopola-mine-induced disruption qf learning behavior. Si-Wu-Tang also prevented the ischemia-induced deficit of learning behavior. Both hot water extract of peony and angelica (1.5 g/kg, p.o.), which are component herbs qf Si-Wu-Tang, prevented the scopolamine-induced learning behavior deficit. Scopolamine (10 uM) suppressed long-term potentiation (LTP) of population spike in the CA1 region of the rat hippocampal slices. Peoniflorin (0.1~ 1uM) extracted from paeony root significantly ameliorated scopolamine-induced inhibition of LTR These results suggest that improvement of deficit of learning behavior by Gouteng-san and Si-Wu-Tang is mediated by direct and/or indirect activation of the cholinergic system in the brain.

  • PDF

Effect of Trehalose on Biological Membranes with Respect to Phase of the Membranes

  • Park, Jin-Won
    • KSBB Journal
    • /
    • v.32 no.2
    • /
    • pp.103-107
    • /
    • 2017
  • The effect of the trehalose incorporation on the biological membranes was investigated with respect to the phase of the membranes using the fluorescence intensity change. Spherical phospholipid bilayers, vesicles, were prepared only with the variation in the phase of each layer via a double emulsion technique. In the aqueous inside of the vesicles, 8-Aminonaphthalene-1,3,6-trisulfonic acid disodium salt(ANTS) was encapsulated. As a quencher, p-Xylene-bis(N-pyridinium bromide)(DPX) was included in the buffer where the vesicles were dispersed. The fluorescence scale was calibrated with the fluorescence of ANTS vesicles in p-Xylene-bis(N-pyridinium bromide)(DPX)-included-buffer taken as 100% fluorescence and the mixture of ANTS and DPX in the buffer as 0% fluorescence. Trehalose injection into the vesicle solution led the distortion of the membrane. It was found that the distortion was related to the phase of each layer the vesicle up on the ratio of trehalose to lipid. In the identical measurements at glucose, the behavior of the distortion was completely different from that of trehalose. These results seem to depend on the stability of the vesicles, due to the osmotic and volumetric effects on the headgroup packing disruption.

Disruption of the Myostatin Gene in Porcine Primary Fibroblasts and Embryos Using Zinc-Finger Nucleases

  • Huang, Xian-Ju;Zhang, Hong-Xiao;Wang, Huili;Xiong, Kai;Qin, Ling;Liu, Honglin
    • Molecules and Cells
    • /
    • v.37 no.4
    • /
    • pp.302-306
    • /
    • 2014
  • Myostatin represses muscle growth by negatively regulating the number and size of muscle fibers. Myostatin loss-of-function can result in the double-muscling phenotype and increased muscle mass. Thus, knockout of myostatin gene could improve the quality of meat from mammals. In the present study, zinc finger nucleases, a useful tool for generating gene knockout animals, were designed to target exon 1 of the myostatin gene. The designed ZFNs were introduced into porcine primary fibroblasts and early implantation embryos via electroporation and microinjection, respectively. Mutations around the ZFNs target site were detected in both primary fibroblasts and blastocysts. The proportion of mutant fibroblast cells and blastocyst was 4.81% and 5.31%, respectively. Thus, ZFNs can be used to knockout myostatin in porcine primary fibroblasts and early implantation embryos.

Anticancer Activity of Bispidinone Derivative by Induction of Apoptosis

  • Lee, Man Gi;Kwon, Ryong
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.336-343
    • /
    • 2020
  • The present study was carried out to investigate the possibility that bispidinone derivative makes anticancer drug availability to human cervical carcinoma cell. The B8 has the lowest IC50 value among B8, B9 and B10 which are bispidinone analogue with bromide. According to cytotoxic test through WST-8 assay, B8 shows the most magnificent cytotoxicity effectiveness with 76 μM of IC50 value. In human cervical carcinoma cell treated with B8, it noticeably controlled cellular multiplication by increase of concentration and time. Furthermore, morphological changes like cellular shrink, disruption and nuclear condensation, feature of apoptosis, are observed. Annexin V-FITC/PI double staining assay test proved that B8 can cause apoptosis. Moreover, after treatment with 76 μM of B8, flow cytometry analysis shows that increase of active oxygen species are induced and membrane potential in mitochondria is decreased. Manifestation of Bcl-2 family and caspase cascades protein provides evidence that B8 induces apoptosis through mitochondria and caspase-related pathway. Taken together, we suggested that B8 reduced membrane potential in mitochondria and induce apoptosis through the pathway depended on mitochondria and caspase.

Structural Origin for the Transcriptional Activity of Human p53

  • Lee, Si-Hyung;Park, Kyu-Hwan;Kim, Do-Hyung;Choung, Dong-Ho;Suk, Jae-Eun;Kim, Do-Hyung;Chang, Jun;Sung, Young-Chul;Choi, Kwan-Yong;Han, Kyou-Hoon
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.73-79
    • /
    • 2001
  • Transcriptional activation domains are known to be inherently "unstructured" with no tertiary structure. A recent NMR study, however, has shown that the transactivation domain in human p53 is populated with an amphipathic helix and two nascent turns. This suggests that the presence of such local secondary structures within the overall "unstructured" structural framework is a general feature of acidic transactivation domains. These pre-existing local structures in p53, formed selectively by positional conserved hydrophobic residues that are known to be critical for transcriptional activity, thus appear to constitute the specific structural motifs that regulate recognition of the p53 transactivation domain by target proteins. Here, we report the results of a NMR structural comparison between the native human p53 transactivation domain and an inactive mutant (22L,23W$\rightarrow$22R,23S). Results show that the mutant has an identical overall structural topology as the native protein, to the extent that the amphipathic helix formed by the residues 18T 26L within the native p53 transactivating domain is preserved in the double mutant. Therefore, the lack of transcriptional activity in the double mutant should be ascribed to the disruption of the essential hydrophobic contacts between the p53 transactivation domain and target proteins due to the (22L,23W$\rightarrow$22R,23S) mutation.

  • PDF

The vacuolar processing enzyme (VPE) mutation suppresses an HR-like cell death induced by the double knockout mutant of vacuolar Ca2+-ATPases in Arabidopsis (애기장대에서 두 액포막 칼슘펌프 돌연변이에 의하여 유도되는 세포사멸 표현형의 액포수식효소(VPE) 돌연변이에 의한 억제)

  • Park, Hyeong-Cheol;Lee, Sang-Min;Kim, Ho-Soo;Chung, Woo-Sik
    • Journal of Plant Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.169-175
    • /
    • 2011
  • Calcium ($Ca^{2+}$) signals have been implicated in regulating plant development and responses to the environmental stresses including a programmed cell death pathway. In animals and plants, cytosolic $Ca^{2+}$ signals have been involved in the activation of programmed cell death (PCD). Recently, we reported that disruption of Arabidopsis vacuolar $\b{A}$utoinhibited $\underline{C}a^{2+}$-$\b{A}$TPases (ACAs), ACA4 and ACA11, resulted in the activation of a salicylic acid-dependent programmed cell death pathway. Although extensive studies have revealed various components of a PCD in plants, executors to directly induce PCD are well unknown. Here, we provide that the vacuolar processing enzymes (VPEs) are involved in a PCD induced by the double knockout mutant of vacuolar $Ca^{2+}$-ATPases in Arabidopsis. The gene expression of VPE was rapidly up-regulated and the enzyme activity of VPE was increased in the double mutant plants. We also generated aca4/aca11/avpe, aca4/aca11/${\gamma}$vpe and aca4/aca11/avpe/${\gamma}$vpe mutant plants. Although cell death phenotype of the double mutant plants was not completely disappeared in the triple and quadruple mutant plants, the triple and quadruple mutant plants showed to significantly delay cell death phenotype of the double mutant plants. These results suggest that the VPE is involved in the HR-like cell death in the double mutant of vacuolar $Ca^{2+}$-ATPases in Arabidopsis.

The Treatment of Osmidrosis Axillae by Use of Modified Skoog's Method (Skoog씨 변법을 이용한 액취증의 치료)

  • Yim, Young-Min;Choi, Jong Woo;Kim, Gi Ho
    • Archives of Plastic Surgery
    • /
    • v.32 no.2
    • /
    • pp.245-249
    • /
    • 2005
  • Various surgical procedures have been described for treating osmidrosis axillare. Elimination of the apocrine glands is prime goal. Optimal operative procedure is characterized as follows: minimal axillary scar(which has cosmetic merits), less complications such as hematoma and seroma, short and less painful recuperating period, minimal damage to the skin and low recurrence rate. Three types of incision technique in subdermal shaving method have beeb commoly used. First, single incision method has an advantage of minimal scarring but more recurrence due to incomplete removal of apocrine glands may occur. Second, double incision technique(Bipedicled flap) has advantages of complete excision, low recurrence rate and relatively minimal scarring, but it could cause frequent necrosis of skin and folding of skin flap. Skoog's method is the third method, which makes four flaps by offset cruciate incisions. It is a better technique in aspect of complete excision of apocrine glands and low recurrence rate but has disadvantages such as development of hypertrophic scar or scar contracture in the line that lies perpendicular to natural axillary skin crease. We used a modified procedure which has shorter length in vertical and transverse incision compared with the classic Skoog's method. We dissected further subcutaneous tissue through the diamond-shaped incision and utilize wide operation field that provide adequate excision of subdermal tissue and proper hemostasis. Between 1999 and 2004, we operated 160 osmidrosis axillare in 80 patients in this technique. Most patients obtained satisfactory result with very low complications. Hematoma or seroma 3.1% Infection 0.6% Partial wound disruption 10% Recurrence 1.2%. Modified Skoog's method for treating osmidrosis axillae could be a optimal technique providing wide operation field for adequate excision of apocrine glands and proper hemostasis and leaving relatively inconspicuous scar and low incidence of scar contracture.

Metagenome Resource for D-Serine Utilization in a DsdA-Disrupted Escherichia coli

  • Lim, Mi-Young;Lee, Hyo-Jeong;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.374-378
    • /
    • 2011
  • To find alternative genetic resources for D-serine dehydratase (E.C. 4.3.1.18, dsdA) mediating the deamination of D-serine into pyruvate, metagenomic libraries were screened. The chromosomal dsdA gene of a wild-type Escherichia coli W3110 strain was disrupted by inserting the tetracycline resistance gene (tet), using double-crossover, for use as a screening host. The W3110 dsdA::tet strain was not able to grow in a medium containing D-serine as a sole carbon source, whereas wild-type W3110 and the complement W3110 dsdA::tet strain containing a dsdA-expression plasmid were able to grow. After introducing metagenome libraries into the screening host, a strain containing a 40-kb DNA fragment obtained from the metagenomic souce derived from a compost was selected based on its capability to grow on the agar plate containing D-serine as a sole carbon source. For identification of the genetic resource responsible for the D-serine degrading capability, transposon-${\mu}$ was randomly inserted into the 40-kb metagenome. Two strains that had lost their D-serine degrading ability were negatively selected, and the two 6-kb contigs responsible for the D-serine degrading capability were sequenced and deposited (GenBank code: HQ829474.1 and HQ829475.1). Therefore, new alternative genetic resources for D-serine dehydratase was found from the metagenomic resource, and the corresponding ORFs are discussed.

Biochemical Characteristics and Function of a Fucosyltransferase Encoded by ste7 in Ebosin Biosynthesis of Streptomyces sp. 139

  • Chang, Ming;Bai, Li-Ping;Shan, Jung-Jie;Jiang, Rong;Zhang, Yang;Guo, Lian-Hong;Zhang, Ren;Li, Yuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1092-1097
    • /
    • 2009
  • A novel exopolysaccharide named Ebosin was produced by Streptomyces sp. 139, with medicinal activity. Its biosynthesis gene cluster (ste) has been previously identified. For the functional study of the ste7 gene in Ebosin biosynthesis, it was disrupted with a double crossover via homologous recombination. The monosaccharide composition of EPS-7m produced by the mutant strain Streptomyces sp. 139 ($ste7^-$) was found altered from that of Ebosin, with fucose decreasing remarkably. For biochemical characterization of Ste7, the ste7 gene was cloned and expressed in Escherichia coli BL21. With a continuous coupled spectrophotometric assay, Ste7 was demonstrated to have the ability of catalyzing the transfer of fucose specifically from GDP-$\beta$-L-fucose to a fucose acceptor, the lipid carrier located in the cytoplasmic membrane of Streptomyces sp. 139 ($ste7^-$). Therefore, the ste7 gene has been identified to code for a fucosyltransferase, which plays an essential role in the formation of repeating sugars units during Ebosin biosynthesis.

A Yeast MRE3/REC114 Gene is Essential for Normal Cell Growth and Meiotic Recombination

  • Leem, Sun-Hee
    • Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.248-255
    • /
    • 1999
  • We have analyzed the MRE3/REC114 gene of Saccharomyces cerevisiae, previously detected in isolation of mutants defective in meiotic recombination. We cloned the MRE3/REC114 gene by complementation of the meiotic recombination defect and it has been mapped to chormosome XIII. The DNA sequence analysis revealed that the MRE3 gene is identical to the REC114 gene. The upstream region of the MRE3/REC114 gene contains a T_4C site, a URS (upstream repression sequence) and a TR (T-rich) box-like sequence, which reside upstream of many meiotic genes. Coincidentally, northern blot analysis indicated that the three sizes of MRE3/REC114 transcripts, 3.4, 1.4 and 1.2 kb, are induced in meiosis. A less abundant transcript of 1.4 kb is detected in both mitotic and meiotic cells, suggesting that it is needed in mitosis as well as meiosis. To examine the role of the MRE3/REC114 gene, we constructed mre3 disruption mutants. Strains carrying an insertion or null deletion of the MRE3/REC114 gene showed slow growth in nutrient medium and the doubling time of these cells increased approximately by 2-fond compared to the wild-type strain. Moreover, the deletion mutant (${\delta}$mre3) displayed no meiotically induced recombination and no viable spores. The mre3/rec114 spore lethality can be suppressed by spo13, a mutation that causes cells to bypass reductional division. The double-stranded breaks (DSBs) which are involved in initiation of meiotic recombination were not detected in the analysis of meiotic chromosomal DNA from the mre3/rec114 disruptant. From these results we suggest that the MRE3/REC114 gene product is essential in normal growth and in early meiotic stages involved in meiotic recombination.

  • PDF