• Title/Summary/Keyword: Double devices

Search Result 445, Processing Time 0.025 seconds

Electrical Properties of Organic Photovoltaic Cell using CuPc/$C_{60}$ double layer (CuPc/$C_{60}$ 이중층을 이용한 유기 광기전 소자의 전기적 특성)

  • Lee, Ho-Shik;Cheon, Min-Woo;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.505-506
    • /
    • 2007
  • Organic photovoltaic effects were studied in a device structure of ITO/CuPc/Al and ITO/CuPc/$C_{60}$/BCP/Al. A thickness of CuPc layer was varied from 10 nm to 50 nm, we have obtained that the optimum CuPc layer thickness is around 40 nm from the analysis of the current density-voltage characteristics in CuPc single layer photovoltaic cell. From the thickness-dependent photovoltaic effects in CuPc/$C_{60}$ heterojunction devices, higher power conversion efficiency was obtained in ITO/20nm CuPc/40nm $C_{60}$/Al, which has a thickness ratio (CuPc/$C_{60}$) of 1:2 rather than 1:1 or 1:3. Light intensity on the device was measured by calibrated Si-photodiode and radiometer/photometer of International Light Inc(IL 14004).

  • PDF

Characteristic Analysis and Design of a Precise Manipulation of Microparticle using Surface Acoustic Wave Device (미세입자의 정밀제어를 위한 표면탄성파 장치의 특성연구 및 설계)

  • Kim, Dongjoon;Eom, Jinwoo;Ko, Byung-Han;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.10
    • /
    • pp.660-666
    • /
    • 2015
  • Surface acoustic wave(SAW) device is used for transporting and patterning micro-scale particles such as cells. In this research, velocity of particles was investigated moved by SAW device with two types of interdigital electrode transducers(IDTs) under various conditions. SAW devices which have single IDTs and double IDTs were designed and fabricated. On the previous studies, resultant velocities of particles were predicted considering output power and power ratio between IDTs-shape. For more accurate prediction, power loss in SAW device and a power difference between two types of IDTs-shape were considered. Maximum error between the test results and predicted values was 5 % so the power loss must be considered in the velocity prediction of the particles.

High-performance photovoltaics by double-charge transporters using graphenic nanosheets and triisopropylsilylethynyl/naphthothiadiazole moieties

  • Agbolaghi, Samira;Aghapour, Sahar;Charoughchi, Somaiyeh;Abbasi, Farhang;Sarvari, Raana
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.293-300
    • /
    • 2018
  • Reduced graphene oxide (rGO) nanosheets were patterned with poly[benzodithiophene-bis(decyltetradecyl-thien) naphthothiadiazole] (PBDT-DTNT) and poly[bis(triiso-propylsilylethynyl) benzodithiophene-bis(decyltetradecyl-thien) naphthobisthiadiazole] (PBDT-TIPS-DTNT-DT) and used in photovoltaics. Conductive patternings changed via surface modification of rGO; because polymers encountered a high hindrance while assembling onto grafted rGO. The best records were detected in indium tin oxide (ITO):poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS):PBDTDTNT/rGO:PBDT-DTNT:LiF:Al devices, i.e., short current density $(J_{sc})=11.18mA/cm^2$, open circuit voltage $(V_{oc})=0.67V$, fill factor (FF) = 62% and power conversion efficiency (PCE) = 4.64%. PCE increased 2.31 folds after incorporation of PBDT-DTNT into thin films. Larger polymer assemblies on bared-rGO nanosheets resulted in greater phase separations.

Underwater striling engine design with modified one-dimensional model

  • Li, Daijin;Qin, Kan;Luo, Kai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.526-539
    • /
    • 2015
  • Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

A New Application of Human Visual Simulated Images in Optometry Services

  • Chang, Lin-Song;Wu, Bo-Wen
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.328-335
    • /
    • 2013
  • Due to the rapid advancement of auto-refractor technology, most optometry shops provide refraction services. Despite their speed and convenience, the measurement values provided by auto-refractors include a significant degree of error due to psychological and physical factors. Therefore, there is a need for repetitive testing to obtain a smaller mean error value. However, even repetitive testing itself might not be sufficient to ensure accurate measurements. Therefore, research on a method of measurement that can complement auto-refractor measurements and provide confirmation of refraction results needs to be conducted. The customized optometry model described herein can satisfy the above requirements. With existing technologies, using human eye measurement devices to obtain relevant individual optical feature parameters is no longer difficult, and these parameters allow us to construct an optometry model for individual eyeballs. They also allow us to compute visual images produced from the optometry model using the CODE V macro programming language before recognizing the diffraction effects visual images with the neural network algorithm to obtain the accurate refractive diopter. This study attempts to combine the optometry model with the back-propagation neural network and achieve a double check recognition effect by complementing the auto-refractor. Results show that the accuracy achieved was above 98% and that this application could significantly enhance the service quality of refraction.

Relationship between Mechanical Properties and Porosity of Porous Polymer Sheet Fabricated using Water-soluble Particles (수용성 입자를 이용한 다공성 폴리머 구조체의 공극률 향상과 기계적 물성과의 관계)

  • So, Sae-Rom;Park, Suk-Hee;Park, Sang-Hu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.16-23
    • /
    • 2018
  • A polymer porous sheet, which can be applied to diverse wearable devices, has some advantages such as light-weight, high flexibility, high elongation, and so many others. In order to fabricate a porous sheet, water-soluble particles like sugar were utilized frequently, and there has been great advances. However, with our best knowledge, there are not enough reports on the mechanical behavior of porous sheets having different porosity. So, in this work, we tried to find out the relationship between porosity and mechanical deformation of a porous sheet. The process parameters such as a particle size, sheet thickness and PDMS mixing ratio with curing agent were analyzed on the effect of increasing the porosity of a sheet. Also, mechanical deformation of a sheet was tested using a tensile experiment. Through the experimental results, we make a conclusion that a highly porous sheet with thin thickness has high flexibility, and it deformed nearly double elongation comparing to worst one among nine cases.

Interleaved High Step-Up Boost Converter

  • Ma, Penghui;Liang, Wenjuan;Chen, Hao;Zhang, Yubo;Hu, Xuefeng
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.665-675
    • /
    • 2019
  • Renewable energy based on photovoltaic systems is beginning to play an important role to supply power to remote areas all over the world. Owing to the lower output voltage of photovoltaic arrays, high gain DC-DC converters with a high efficiency are required in practice. This paper presents a novel interleaved DC-DC boost converter with a high voltage gain, where the input terminal is interlaced in parallel and the output terminal is staggered in series (IPOSB). The IPOSB configuration can reduce input current ripples because two inductors are interlaced in parallel. The double output capacitors are charged in staggered parallel and discharged in series for the load. Therefore, IPOSB can attain a high step-up conversion and a lower output voltage ripple. In addtion, the output voltage can be automatically divided by two capacitors, without the need for extra sharing control methods. At the same time, the voltage stress of the power devices is lowered. The inrush current problem of capacitors is restrained by the inductor when compared with high gain converters with a switching-capacitor structure. The working principle and steady-state characteristics of the converter are analyzed in detail. The correctness of the theoretical analysis is verified by experimental results.

Fabrication and statistical characterization of Nb SQUID sensors for multichannel SQUID system

  • Kim, B.K.;Yu, K.K.;Kim, J.M.;Kwon, H.;Lee, S.K.;Lee, Y.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.4
    • /
    • pp.62-66
    • /
    • 2020
  • We fabricated superconducting quantum interference devices (SQUIDs) based on Nb Josephson junctions, and characterized the key parameters of the SQUIDs. The SQUIDs are double relaxation oscillation SQUIDs (DROSs) having larger flux-to-voltage transfer coefficient than the standard DC-SQUIDs. SQUID sensors were fabricated by using Nb junction technology consisted of a DC magnetron sputtering and a conventional photolithography process. In multichannel SQUID systems for whole-head magnetoencephalography measurement with a helmet-type SQUID array, we need about 336 SQUID sensors for each system. In this paper, we fabricated a few hundred SQUID sensors, measured the critical current, flux modulation voltage and decided if each tested SQUID can be used for the multichannel systems. As the criterion for the acceptance of the sensors, we chose the critical current and amplitude of the modulation voltage to be 8 ㎂ and 80 ㎶, respectively. The average critical current of the SQUIDs was 10.58 ㎂. The typical flux noise of the SQUIDs with input coil shorted was 2 μΦ0/√Hz at white region.

Development of an Integrated Oil Purification System (통합형 오일 정제 시스템의 개발)

  • Hong, Sung-Ho;Lee, Kyung-Hee;Jeong, Nam-Wha
    • Tribology and Lubricants
    • /
    • v.38 no.4
    • /
    • pp.121-127
    • /
    • 2022
  • This study presents the development of an integrated oil purification system consisting of moisture removal, oil flushing, and oil filtering devices. In this system, the oil flushing device is combined with a micro-bubble generator. Oil purification is necessary for ensuring the high performance of the lubricant through the efficient removal of contaminants and thus enables good maintenance of mechanical systems. The developed purification system removes moisture, varnish, and solid particles. Moreover, during oil purification, the oil flushing device separates foreign materials and contaminants remaining in the lubricating oil piping or mechanical systems. The microbubble generator, which is combined with the oil flushing device, can separate harmful contaminants, such as sludge, wear particles, and rust, from piping or lubrication systems through the cavitation effect. Moisture is removed using a double high-vacuum chamber, while sludge and varnish are removed via electro-absorption using a high-voltage generator. Additionally, the total maintenance cost of the system is reduced through the use of domestically fabricated cartridge filters composed of glass fiber and cellulose. The heater, which maintains the temperature of the lubricant at 60℃, can process 41,000 L of lubricant simultaneously. Multiple tests confirmed that the proposed integrated purification system exhibits good performance in oil flushing and removal of water and varnish.

3D Animation Body Profiles from Full-body Scans and Motion Capture (풀바디 스캔과 모션 캡처를 활용한 3D 애니메이션 바디 프로필)

  • Jaewon Song;Sang Wook Chun;Subin Lee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.59-67
    • /
    • 2023
  • This paper proposes a 3D animated body profile using 3D body scanning and motion capture devices. Users can create their own personalized body profiles with animation by performing 3D scans for a predetermined set of poses. To achieve this, a template animation was obtained through motion capture for a series of poses, and the acquired 3D scan data from users was mapped to the key poses of the animation using Pose-space deformer. The resulting 3D animated body profiles provide users with greater satisfaction compared to traditional static 2D images or 3D scan data.