• Title/Summary/Keyword: Double body analysis

Search Result 137, Processing Time 0.03 seconds

Numerical Evaluation of 2nd Derivatives of the Potential in the Panel method for the Unsteady Potential Flow Problem (비정상 포텐셜 유동의 패널법 해석에서 포텐셜의 2차 미분값의 수치계산)

  • 양진호;전호환
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.41-45
    • /
    • 2000
  • In solving the unsteady potential flow problem of the ship in waves with the panel method, in general one can consider the basic flow as the free stream or double body solution. For the double body solution, the body boundary condition has the 2nd derivatives of the velocity potential. Low order panel methods are known to suffer from the significant error in the 2nd derivatives computed at the body surface. This paper analyzes the numerical error in the 2nd derivatives for a 2-D cylinder and a 3-D sphere problem, and an extrapolation method to obtain the correct derivatives on the body surface is suggested.

  • PDF

The Strength Comparisons between Double deck Car body Structures with Al Extruded Panels and SUS (Al 압출재 및 SUS 2층열차 차체의 강도해석 비교 검토)

  • 황원주;김형진;강부병;허현무
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.801-806
    • /
    • 2002
  • The operation of double deck train have increased in many countries such as Japan france, and the Netherlands as efficient, safe and convenient alternative transportation systems. Because of continuous concentration of population into Seoul metropolitan and serious traffic jam, the number of passengers using the commuter train have been increased rapidly. Considering these situations, we can find one of the solutions for heavy traffic problems through double deck trains. Stainless steel, and aluminum extruded panel are used to reduce the weight of double deck train. In this paper we compare the results of structural analysis of the double deck car body structures with Al extruded panels and stainless steel. We hope the results of this study may be used as basic guidelines in designing double deck trains in the future.

  • PDF

Analysis on Induced Current Density Inside Human Body of Hot-Line Worker for 765kV Double Circuit Transmission Line (765 kV 2회선 송전선의 활선 작업자 인체내부 유도전류 밀도 해석)

  • Min, Suk-Won;Song, Ki-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.46-50
    • /
    • 2004
  • This paper analysed the induced current density inside human body of hot-line worker for 765kV double circuit transmission line according to locations of human body Human was modelled by several organs, which included brain, heart, lungs, liver and intestines. We applied the 3 dimensional boundary element method to calculate induced electric fields.

  • PDF

Meta Model-Based Desgin Optimization of Double-Deck Train Carbody (2 층열차 차체의 meta model 기반 최적설계)

  • Hwang W.J.;Jung J.J.;Lee T.H.;Kim H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.387-392
    • /
    • 2005
  • Double-deck train have studied in the next generation train in KRRI. Double-deck train have more seat capacities compared with single deck vehicles and is a efficient, reliable and comfortable alternative train. Because of heavy weight, weight minimization of double-deck train carbody is imperative to reduce cost and extend life-time of train. Weight minimization problem of the double-deck train car-body is required to decide 66 design variables of thicknesses for large aluminum extruded panel while satisfying stress constraints. Design variables are too many and one execution of structural analysis of double-deck train carbody is time-consuming. Therefore, we adopt approximation technique to save computational cost of optimization process. Metamodels such as response surface model (RSM) and kriging model are used to approximate model-based optimization is described. RSM is easy to obtain and expressed explicit function, but this is not suitable for highly nonlinear and large scaled problems. Kriging model employs an interpolation scheme and is developed in the fields of spatial statistics and geostatistics. Target of this design is to find optimum thickness of AEP to minimize weight of doulbe-deck train carbody. In this study, meta model techniques are introduced to carry out weight minimization of a double-deck train car-body.

  • PDF

Lightweight Design of Car Bodies for Double Deck High-Speed Trains (2층 고속열차 차체 구조물의 경량화 설계)

  • Kang, SeungGu;Shin, KwangBok;Ko, TaeHwan;You, WonHee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • This paper describes a weight-reduction design method for the car bodies of a double deck high-speed train (service speed of 300 km/h). The method uses lightweight materials and a topology optimization technique. In this study, aluminum extrusions and sandwich composites were selected as the best materials to reduce the weight of the car body. The topology optimization technique was used to determine which car body parts could be made of the sandwich composites to achieve additional weight savings. The results of the topology optimization analysis showed that sandwich composites could be used for secondary car body members such as the roof and the second underframe. Also, it was found that a car body composed of aluminum extruded parts and sandwich composites could weigh up to 14% less than a car body made of only aluminum extrusions.

Low-Molecular Collagen Peptide Supplementation and Body Fat Mass in Adults Aged ≥ 50 Years: A Randomized, Double-Blind, Placebo-Controlled Trial

  • Jeongbin Park;Minji Kim;Hyeri Shin;Hyejin Ahn;Yoo Kyoung Park
    • Clinical Nutrition Research
    • /
    • v.12 no.4
    • /
    • pp.245-256
    • /
    • 2023
  • A randomized, double-blind, placebo-controlled trial was conducted to confirm whether collagen peptide supplementation for 12 week has a beneficial effect on body fat control in older adults at a daily physical activity level. Participants were assigned to either the collagen group (15 g/day of collagen peptide) or the placebo group (placebo drink). Body composition was measured by bioelectrical impedance analysis (BIA) and dual-energy X-ray absorptiometry (DEXA). In total, 74 participants (collagen group, n = 37; placebo group, n = 37) were included in the final analysis. The collagen group showed a significant reduction in total body fat mass compared with the placebo group, as evidenced by both BIA (p = 0.021) and DEXA (p = 0.041) measurements. Body fat mass and percent body fat of the whole body and trunk reduced at 12 weeks compared with baseline only in the collagen group (whole body: body fat mass, p = 0.002; percent body fat, p = 0.002; trunk: body fat mass, p = 0.001; percent body fat, p = 0.000). Total fat mass change (%) (collagen group, -0.49 ± 3.39; placebo group, 2.23 ± 4.20) showed a significant difference between the two groups (p = 0.041). Physical activity, dietary intake, and biochemical parameters showed no significant difference between the groups. The results confirmed that collagen peptide supplementation had a beneficial effect on body fat reduction in older adults aged ≥ 50 years with daily physical activity level. Thus, collagen peptide supplementation has a positive effect on age-related changes.

The Relationship among Stride Parameters, Joint Angles, and Trajectories of the Body Parts during High-Heeled Walking of Woman

  • Park, Sumin;Lee, Minho;Park, Jaeheung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.245-252
    • /
    • 2013
  • Objective: This paper analyzes the changes on stride parameters, joint angles, and trajectories of the body parts due to high heels during walking and explains the causal relationship between the changes and high heels. Background: This study aims to indicate the comprehensive gait changes by high heels on the whole body for women wearing high heels and researchers interested in high-heeled walking. Method: The experiment was designed in which two different shoe heel heights were used for walking (1cm, 9.8cm), and twelve women participated in the test. In the experiment, 35 points on the body were tracked to extract the stride parameters, joint angles, and trajectories of the body parts. Results: Double support time increased, but stride length decreased in high-heeled walking. The knee inflexed more at stance phase and the spine rotation became more severe. The trajectories of the pelvis, the trunk and the head presented outstanding fluctuations in the vertical direction. Conclusion: The double support time and the spine rotation were changed to compensate instability by high heels. Reduced range of motion of the ankle joint influenced on the stride length, the knee flexion, and fluctuations of the body parts. Application: This study can provide an insight of the gait changes by high heels through the entire body.

Analysis on Current Density Induced Inside Body of Hot-Line Worker for 765kV Double Circuit Transmission Line (765 kV 2회선 송전선 활선 작업자 인체내부 유도전류 밀도 해석)

  • Song, Ki-Hyun;Min, Suk-Won
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.5
    • /
    • pp.231-238
    • /
    • 2006
  • This paper analysed the induced current density inside human body of hot-line worker for 765kV double circuit transmission line according to locations of human body. Human model was composed of several organs and other parts, whose shapes were expressed by spheroids or cylinders. Organs such as the brain, heart, lungs, liver and intestines were taken into account. Applying the 3 dimensional boundary element method, we calculated induced current density in case a worker was located inside and outside a lowest phase of 765 kV transmission line in which a 60% current of maximum load flowed. As results of study, we found a maximum induced current density in all organs was less than $10mA/m^2$ when a wonder was outside. As one in brain and heart was higher than $10mA/m^2$ when a worker was inside, we propose a method for lowering current density.

Development of a Computer Model of a Large-sized Truck Considering the Frame as a Flexible Body (프레임을 유연체로 고려한 대형트럭 컴퓨터 모델의 개발)

  • 문일동;오재윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.197-204
    • /
    • 2003
  • This paper develops a computer model for estimating the handling of a cabover type large-sized truck. The truck is composed of front and rear suspension systems, a frame, a cab, and ten tires. The computer model is developed using ADAMS. A shock absorber, a rubber bush, and a leaf spring aunt a lot on the dynamic characteristic of the vehicle. Their stiffness and damping coefficient are measured and used as input data of the computer model. Leaf springs in the front and rear suspension systems are modeled by dividing them three links and joining them with joints. To improve the reliability of the developed computer model, the frame is considered as a flexible body. Thus, the frame is modeled by finite elements using MSC/PATRAN. A mode analysis is performed with the frame model using MSC/NASTRAN in order to link the frame model to the computer model. To verify the reliability of the developed computer model, a double lane change test is performed with an actual vehicle. In the double lane change, lateral acceleration, yaw rate, and roll angle are measured. Those test results are compared with the simulation results.

A Study on the Structural Analysis for the Aluminum Alloy Carbody of a Double-Deck EMU (2층열차 차체의 구조강도해석에 관한 연구)

  • Hwang Won-Ju;Kim Hyeong-Jin
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.91-97
    • /
    • 2003
  • In many countries such as Japan, France and so on, the number of double-deck trains has been dramatically increased for the purpose of public traffic. Several researchers have performed feasiblilty studies related to the operations of double deck rolling stock vehicles in Korea since 2001. In recent years, rolling stock vehicles are required to have light weight to save energy consumption and maintenance costs. For these reasons, the standard EMU vehicle developed by KRRI and Kwan-Ju EMU(Electric Multi Unit) are made of aluminum extruded panels. The concept model of a double-deck rolling stock vehicle investigated in this study is also designed to use AEP(Aluminum Extruded Panel). In this paper, the methods related to the structural strength improvements of the car body are proposed through careful modifications of thicknesses and shapes of AEP.

  • PDF