• Title/Summary/Keyword: Double angle

Search Result 482, Processing Time 0.025 seconds

Analytical Model for the Calculations of Ultimate Moment Capacities of Double Angle Connections (더블앵글 접합부의 극한모멘트 산정을 위한 해석모델)

  • Yang, Jae-Geun;Lee, Gil-Young;Cho, Hye-Jung;Choun, Ji-Won
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.81-87
    • /
    • 2006
  • This study has been conducted to predict the ultimate moment capacities of double angle connections with various angle thicknesses and bolt gage distances. Considering the results of experimental tests conducted previously, a simplified analytical model is suggested in this research. In addition, some basic data are also provided for structural engineers to design a double angle connection preliminary.

  • PDF

Analytical Models for the Initial Stiffness and Ultimate Moment of a Double Angle Connection (더블앵글 접합부의 초기강성 및 극한모멘트 산정을 위한 해석모델)

  • Ang, Jae Geun;Lee, Gil Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.311-320
    • /
    • 2006
  • This study has ben conducted to investigate the effect of the number of bolts on stiffness and strength of a double-angle connection and to propose two simplified models that can predict the initial stiffness and ultimate connection moment of a double-angle connection, respectively. In adition, we also aim to provide some basic reference data for structural designers to choose the most adequate prediction equation and to more precisely double-angle connection.

An Analytical Model for Calculating Initial Stiffnesses of Double Angle Connections (더블앵글 접합부의 초기강성 산정을 위한 해석모델)

  • Yang, Jae-Guen;Kim, Ki-Hwan;Kim, Ho-Keun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.55-63
    • /
    • 2004
  • Double angle connections are commonly used for the construction of the low-rise steel framed buildings. Several experimental tests lave been conducted to investigate the effect of the number of bolts on the rotational stiffness of a double angle connection. Several parameters are obtained by performing regression analysis. An analytical model has been introduced to calculate the initial stiffness of a double angle connection in this research.

  • PDF

Improvement of Vehicle Handling Performance due to Toe and Camber Angle Change of Rear Wheel by Using Double Knuckle (이중너클을 이용한 후륜 토 및 캠버각 변화를 통한 조종안정성 개선)

  • Sohn, Jeonghyun;Park, Seongjun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.121-127
    • /
    • 2013
  • In this study, suspension geometry is controlled to improve vehicle handling performance. The toe and camber of the rear suspension is controlled independently by using a double knuckle structure designed to enhance the vehicle cornering stability. Camber and toe changes in the rear wheel during high speed turning maneuver are important factors that influence the vehicle stability. Toe in the rear outer wheel plays a dominant role in cornering. A control algorithm for the camber and the toe angle input is developed to carry out the control simulation of the vehicle such as single lane change, the steady state cornering, the double lane change and the step steering simulation. Effects of the camber and toe angle control are analyzed from the computer simulations. A double lane change simulation revealed that the suspension mechanism with variable camber angle and variable toe angle decreases the peak body slip angle and peak yaw rate, 50% and 10%, respectively.

Experimental Study on the Aerodynamic Performance of Double Inlet Sirocco Fan for a Package Air Conditioner (PAC용 양흡입 시로코홴의 공력성능에 관한 실험적 연구)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.58-63
    • /
    • 2013
  • The aerodynamic performance of double inlet sirocco fan is strongly dependent upon the design factors of impeller and scroll. In this paper, the change of scroll size was adopted to investigate the aerodynamic performances of double inlet sirocco fan and indoor PAC. Especially, a scroll expansion angle and a cut-off clearance ratio were considered to change the scroll size. In addition, the installation depth between double inlet sirocco fan and indoor PAC was considered. As a result, the total pressure efficiency of double inlet sirocco fan shows about 62%~73% according to the change of scroll expansion angles. Moreover, the flowrate performance of indoor PAC is the best at the condition of a scroll expansion angle of 8°, an installation depth of 15 mm and a cut-off clearance ratio of 8%.

The Evaluation of Usefulness of the Manufactured DTAB (Double Tilt Angle Board) System (Double Tilt Angle Board (DTAB)의 자체 제작에 관한 유용성 평가)

  • Lee, Joung-Jin;Jang, In-Gi;Kim, Wan-Sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.1
    • /
    • pp.43-51
    • /
    • 2006
  • Purpose: To resolution of A hospital-handmade modification double tilt angle immobilization system (DTAB immobilization system) and to report the clinical results of it. Material and Methods: It was developed in conjunction with the breast board for patients unable to achieve and maintain the desired uncomfortable respiration and position of set-up needed in the treatment of RT (This custom design provides an alternative to accomplishing this desired head angle needed to relax position treatment area, realizing that the lenses totally protected eye-ball out) By using the angled breast board and SBDD(small bowel device), reproducibility of set-up and patient comfort were addressed throughout the simulation, computed tomography planning and treatment process. Results: Usually patients the error range-within 5 mm. When use of Aqua patients error range-within 3 mm. Conclusion: It was constructed in tandem with a unique custom-built double tilt angle board (DTAB). It was designed to eliminate clinical set-up problems with head immobilization and instability during treatment, thus providing for a more comfortable head rest for the patient.

  • PDF

An Analytical Study on the Nonlinear Behavior of Double Angle Connections Subjected to Shear (전단력을 받는 더블 앵글 접합부의 비선형 거동에 관한 해석적 연구)

  • Lee, Soo-Kueon;Hong, Kap-Pyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.65-73
    • /
    • 2000
  • The behavior of double angle connections is analyzed by 3D finite element method using ABAQUS(ver 5.8). Moment-rotation curves for the connections are generated, as well as stress distribution for angle and bolt. Double angle connections have various angle thickness, gage distance and number of bolt. Parameters, such as initial stiffness, plastic tiffness, reference load and curve shape parameter were obtained by regression method using Richard's formula. These parameter lead to predict nonlinear behavior of double angle connection. Design curves giving the parameters of the moment-rotation curves are generated. These parameters are primarily a function of the angle thickness, gage distance and the number of bolts in the connection. Using these parameters, connection moment and its ratio to the full plastic moment capacity Mp of the beam are calculated.

  • PDF

The Effect of the Variation of the Number of Bolts on the Rotational Stiffnesses of Double Angle Connections (볼트수의 변화가 더블앵글 접합부의 회전강성에 미치는 영향)

  • Yang, Jae-Geun;Kim, Ho-Keun;Kim, Ki-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.1 s.11
    • /
    • pp.69-75
    • /
    • 2004
  • In the construction of row-rise steel buildings, double angle connection can be considered as one of most effective connection types. Its connection flexibility depends mainly on several parameters such as angle thickness, bolt gage distance, and number of bolts. To establish the effect of the variation of the number of bolts on the moment-rotation relationship, three experimental tests have been conducted in this research. Based on the results of each experimental test, the rotational stiffness of each angle specimen can be calculated by performing regression analysis. Considering the results of regression analysis, we concluded that the more the number of bolts used in double angle connection, the higher the rotational stiffness as one can expected.

  • PDF

A Study on Simplified Model of Double Angle Connections Subjected to Axial Loads (축방향 인장력을 받는 더블 앵글 접합부의 단순모형에 관한 연구)

  • Hong, Kap-Pyo;Yang, Jae-Guen;Lee, Soo-Kueon;Song, Byung-Ju
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.75-82
    • /
    • 2000
  • Recently, many studies on connections in steel structures have been performed. In practice, designers assume that the connection is a rigid- or pinned-one, however, actually the connection behaves as partially restrained one, neither fully restrained nor unrestrained. This paper concentrates on the behavior of double angle connections in the field of semi-rigid connections. The behavior of double angle connection. induced by abrupt axial tension load or by collapsed brace in medium or low rise building, is analyzed by 3D nonlinear finite element method using ABAQUS(ver 5.8). From the analytic results. a simplified model of double angle and a rotational stiffness at the corner of the angle are derived, which are fundamentally used for understanding the behavior of the double angle connection.

  • PDF

Analysis of Effects of Line Tension and Electrical Double Layers on Electrowetting Phenomenon (전기습윤 현상에서의 선장력과 전기 이중층의 영향에 대한 해석)

  • Chung, Sang-Kug;Kang, Kwan-Hyoung;Lee, Choung-Mook;Kang, In-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.956-962
    • /
    • 2003
  • The Lippmann-Young equation has been widely used in electrowetting to predict the contact-angle change of a droplet on a insulating substrate with respect to the externally-applied electrical voltage. The Lippmann-Young equation is derived by assuming a droplet as a perfect conductor, so that the effect of the electrical double layer and the line tension are not taken into account. The validity of the assumption has never been checked before, systematically. In the present investigation, a modified Lippmann-Young equation is derived taking into account of the effect of the electrical double layer and the line tension. To assess their influence on contact-angle change in electrowetting, the electrostatic field around the three-phase contact line is analyzed by solving the Poisson-Boltzmann equation numerically. The validity of the numerical methods is verified by using the past theoretical results on the electrostatic field around a wedge-shaped geometry, which shows fairly good agreement. The results of the present investigation clearly indicate that the effect of the electrical double layer and the line tension is negligible for a millimeter-sized droplet. On the other hand, for a micron-sized droplet, the effect of the line tension can become a dominating factor which controls the contact-angle change in electrowetting.