• 제목/요약/키워드: Double Lop Joint

검색결과 2건 처리시간 0.009초

접착제로 접합된 복합재료 구동축의 토크 전달특성에 관한 연구 (A Study on the Torque Transmission Characteristics of Adhesively Bonded Composite Drive Shafts)

  • 김원태;김기수;이대길
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.1980-2000
    • /
    • 1993
  • The stresses and torque transmission capabilities of adhesively bonded circular, hexagonal and elliptical lap joints were analyzed by the finite element and compared with the experimental results. The adherends of the joints were composed of carbon fiber/epoxy composite shafts and steel shafts. In calculating the torque transmission capabilities, the linear laminate properties of the composite material and the nonlinear shear properties of the adhesive were used. Using this method, the torque transmission capabilities of adhesively bonded lap joints could be obtained within 10% error compared to the experimental results except some single lap joints. The experiments revealed that the hexagonal joint had the best torque transmission capability from the single lap joints and the double lap joint had better torque transmission than the single lap joint.

6 더블팬케이크 Bi-2223 고온초전도 마그네트 제작 (Fabrication of 6 double pancakes Bi-2223 HTS magnet)

  • 하홍수;장현만;이남진;오상수;하동우;류강식;이해근;이준석
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.373-377
    • /
    • 1999
  • HTS magnet operated at 20${\sim}$40 K was fabricated using three pieces of 100 m Bi-2223 high temperature superconductors fabricated by powder-in-tube process. It was composed of 6 double pancakes with 75 ID. and 113 OD. connected by lab splice. Coil I$_c$ of each DP.(double pancake) obtained for a 140 turn, fabricated using react and wind procedure was 6${\sim}$8 A at 77 K, self field. The maximum field was measured 0.06 T at lop = 5 A, 77 K. The joint resistance due to lap splice of HTS tapes affect badly to operate HTS magnet with persistent current mode, total effective magnet resistance included lap splice was 55 ${\mu}$ ${\omega}$ at 77 K.

  • PDF