• 제목/요약/키워드: Double Glazing

검색결과 41건 처리시간 0.022초

커튼월 유리의 열파손에 관한 실험적 연구 (An Experimental Study on Thermal Breakage in Curtain Wall Glazing)

  • 이재현;남중우;방중석
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.236-237
    • /
    • 2013
  • In recent years, the use of glass applied to curtain wall as a building facade material has increased in our nation. However, the non-tempered curved double glass is very easy to broke because it is difficult to guarantee the quality in process of making it into double glazing. So, it is more vulnerable to thermal breakage than tempered double glass. In this paper, surface temperature difference on curved double glazing was compared to that of heat strengthened glass and flat glass by conducting thermal breakage experiments. As a result, flat single glass was broken at temperature difference of 100~140 degrees but curved double glazing was broken at that of 40~60 degrees. Therefore, it was concluded that curved double glazing is more vulnerable than flat double glazing to thermal breakage, and it should be considered the possibility of thermal breakage when curtain wall glazing is applied as a building facade material.

  • PDF

곡면 복층유리 열파손에 관한 실험적 연구 (An Experimental Study on Thermal Breakage in Curved Double Glazing)

  • 남중우;이재현
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.543-548
    • /
    • 2012
  • The use of glass applied to curved surface as a building material has increased in recent years. However, the curved glass is difficult to guarantee the quality in process of making it into double glazing, So it is vulnerable to thermal breakage. In this paper, when the glass broken during experiments, surface temperature difference on curved double glazing was compared to that of heat strengthened glass and flat glass. As a result, flat single glass was broken at temperature difference of 100~140 degrees but curved double glazing was broken at that of 40~60 degrees. Therefore, curved double glazing is more vulnerable than flat double glazing to thermal breakage, so it should be considered when applied to building facade.

  • PDF

저방사 코팅이 진공창의 열성능에 미치는 영향 (Study on thermal performance of vacuum window with various low-ε coating glasses)

  • 조성환;태춘섭
    • 설비공학논문집
    • /
    • 제9권3호
    • /
    • pp.300-311
    • /
    • 1997
  • A theoretical method was developed to analyze the effect of low-$\varepsilon$ coatings which have influence on thermal performance of vacuum windwo glazing and double pane glazing. The overall heat transfer coefficient(U) value and thermal performance were analyzed by theroretical method on various kins of windows. TRNSYS program was used to analyze total heating and cooling energy consumption on the model building which has various windows. As the result, better thermal insulation can be achieved on the vacuum window glazing than double pane glazing when low-$\varepsilon$ coating was done on the surface of glass. Total heating and cooling energy consumption was almost same on the double pane window glazing but was lessened on the vacuum window glazing when the window size of south direction increased. Therefore, low-$\varepsilon$ coating was very necessary for vacuum window glazing in order to improve thermal insulation performance and efficient energy conservation can be achieved by vacuum window glazing at the real building which has large window.

  • PDF

더블로이유리 적용 창호의 구성요소에 따른 단열성능 비교 실험 (A Comparison of Thermal Performance of Double Low-E Glazing Window according to Various Material)

  • 장철용;안병립;김치훈;김준섭;이성재
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.133-137
    • /
    • 2011
  • Low-e glazing is classified as soft low-e glazing and hard low-e glazing. Hard low-e glazing can be temperable and its handling is comfortable because its coating film is a oxide film generated at high temperatures. But there is a fatal weakness that its insulation performance and shielding performance are lower compared to soft low-e glazing by low electrical conductivity of coating film. Soft low-e glazing is excellent because its coating film consists of Ag that is excellent electrical conductivity and it has strength that can supply various product consumers want. But soft low-e glazing has weaknesses that temperable and handling are difficult because Ag is oxidized easily. Therefore this study analyzes thermal performance of glazing by changing filling gas according to applying low-e glazing through simulation to judge performance before making sample. After this process, a comparative experimental study was done through TVS by making temperable low-e glazing.

  • PDF

단열 도료 코팅 창호의 냉난방부하 특성분석 및 경제성 평가 (The Estimation of Heating, Cooling Load and Economical Efficiency Analysis of Insulation Paint Coating Windows)

  • 정열화;김병수
    • 한국태양에너지학회 논문집
    • /
    • 제31권6호
    • /
    • pp.95-102
    • /
    • 2011
  • The purpose of study is to estimate heating, cooling load performance and economic efficiency in office building with applied the functional paint. this paint can reduced SHGC(Solar Heat Gain Coefficient) on the glazing surface by coating. In this study, estimated to compared with double glazing, low-e glazing, IP(Insulation Paint) and IPu(Insulation UV-Cut Paint) coating glazing. As a result of this study, 1)heating & cooling load Analysis, SHGC value and U-factor of double glazing is about 0.70 and 3.29($W/m^2K$). low-E glazing is about 0.65 and 2.70($W/m^2K$). Two-side it is about 0.27 and 3.25($W/m^2K$). When compared to double glazing, annual heating & cooling load of low-E glazing, Two-side IPu and IP paint coating glazing is 3,012MWh($124kWh/m^2$), 2,910MWh($120kWh/m^2$), 2,867MWh($118.4kWh/m^2$) and 2,867MWh($118.4kWh/m^2$). It i sreduced to 2.0%, 5.2%, 6.7%, and 6.7% respectively. 2)the estimation of economic efficiency, low-e glazing installed in office building can not recover the investment within a lifetime 40years. but IPu and IP paint, two-side coating in glazing, have a payback period of 13 years respectively.

창호를 통한 열전달 현상에 관한 연구 (A Study on the Heat Transfer Phenomenon through the Glazing System)

  • 강은율;오명원;김병선
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.32-37
    • /
    • 2009
  • An energy loss through the window system occupies about 10 to 30 percent on energy consumption of the whole building. That is the reason, several elements for a building composition of window system are the weakest from the heat. Insulation performance increases for the reducing heat loss. Heat transfer through the window system that is reducing heat transfer through conduction, convection and radiation. Insulation performance reinforcement methods classify improving heat specific quality of window system and improving efficiency of whole window system. The most application method among each methods is reducing emission ratio of the window system(Low-E glass), increasing a number of glazing(multiple window) and a method of vacuuming between glazing and glazing. Therefore this study is investigated a sort of glazing and specific character, U-value calculation with changing glazing thickness and calculation of temperature distribution and U-value with a glazing charging gas kind from double glazing. For a conclusion, an aspect of U-value figure at the smallest value case of vacuum glazing with Low-E coating. That means insulation efficiency is the best advantage during a building plan selecting vacuum glazing with Low-E coating for a energy saving aspect. In this way, U-value become different the number of glazing, coating whether or not and selecting injection gas. Therefore selecting of glazing is very important after due consideration by a characteristic and use of building and consideration of strong point and weak point.

  • PDF

염료감응형 태양전지를 적용한 유리 패널의 효율 향상에 관한 연구 (A Study on the Efficiency Improvement of Glazing Panel with DSC Modules)

  • 장한빈;강준구;이상길;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제33권2호
    • /
    • pp.35-41
    • /
    • 2013
  • Dye-sensitized solar cell (DSC) allows light transmission and the application of various colors that make it especially suitable for building-integrated PV (BIPV) application. In order to apply DSC module into windows, it has to be panelized: DSC module should be protected with reinforced glass to the entire surface. Up to date, it seems to be common to make double glazing with DSC modules with air gaps between the glasses and the DSC modules. Few research has been conducted on the characteristics of various glazing types with DSC modules. This study aims to analyze the electrical performance of DSC modules according to panelizing method for glazing unit with DSC modules. The prototype of the DSC glazing that applied silicone filler between DSC modules and glasses was developed. The electrical performances of this type of DSC glazing with the filler and rather conventional double glazing with DSC modules were compared. Their performances were measured using a solar simulator that is suitable for DSC performance testing. The results indicated that the electrical performance of the filler type DSC glazing improved by 7% compared to that of the conventional DSC double glazing type.

Structural glass panels: An integrated system

  • Bidini, G.;Barelli, L.;Buratti, C.;Castori, G.;Belloni, E.;Merli, F.;Speranzini, E.
    • Smart Structures and Systems
    • /
    • 제30권3호
    • /
    • pp.327-332
    • /
    • 2022
  • In building envelope, transparent components play an important role. The structural glazing systems are the weak element of the casing in terms of mechanical resistance, thermal and acoustic insulation. In the present work, new structural glass panels with granular aerogel in interspace were investigated from different points of view. In particular, the mechanical characterization was carried out in order to assess the resistance to bending of the single glazing pane. To this end, a special instrument system was built to define an alternative configuration of the coaxial double ring test, able to predict the fracture strength of glass large samples (400 × 400 mm) without overpressure. The thermal and lighting performance of an innovative double-glazing façade with granular aerogel was evaluated. An experimental campaign at pilot scale was developed: it is composed of two boxes of about 1.60 × 2 m2 and 2 m high together with an external weather station. The rooms, identical in terms of size, construction materials, and orientation, are equipped with a two-wing window in the south wall surface: the first one has a standard glazing solution (double glazing with air in interspace), the second room is equipped with the innovative double-glazing system with aerogel. The indoor mean air temperature and the surface temperature of the glass panes were monitored together with the illuminance data for the lighting characterization. Finally, a brief energy characterization of the performance of the material was carried out by means of dynamic simulation models when the proposed solution is applied to real case studies.

덧유리 및 방풍재 적용을 통한 슬라이딩 창의 단열 및 기밀성능 개선효과 분석 (The Effect of the Attached Glazing and Windbreak on the Thermal Performance and Air Tightness of Sliding window)

  • 배민정;강재식;최경석;최현중
    • KIEAE Journal
    • /
    • 제17권4호
    • /
    • pp.59-65
    • /
    • 2017
  • Purpose: Thermal performance and air tightness of window are improved for the building energy efficiency. As the deteriorated houses are increased, the improve measures with low cost and easy installation are developed in the energy performance of window. Attached glazing and windbreak can be easily applied to the window with low cost. In this paper, the effect of the attached glazing and windbreak on the thermal performance and air tightness of window is analyzed as the measure to improve performance of window. Method: Thermal transmittance of glazing is evaluated through WINDOW simulation according to thickness of attached glazing and air cavity. Based on the simulation results, thermal transmittance, air tightness and condensation resistance performance of four cases are tested according to Korea standards. One type of PVC sliding double window is chosen as the specimen. For the analysis on low performance of window, the outside of window is excluded in the PVC sliding double window. Result: This study shows that thermal performance of glazing can be increased by the application of attached glazing. Furthermore, lower thermal performance of glazing can obtain the higher effect of attached glazing. The application of attached glazing and windbreak can effect on increasing thermal performance and air tightness of window.

단열성 시험 방법을 통한 진공유리의 구성 및 필러 배치에 따른 열 성능 평가 (The Evaluation of Thermal Performance of Vacuum Glazing by Composition and the Pillar Arrangement through Test Method of Thermal Resistance)

  • 조수;김석현;엄재용
    • 한국태양에너지학회 논문집
    • /
    • 제35권1호
    • /
    • pp.61-68
    • /
    • 2015
  • The advanced counties effort to the supplement of the zero energy buildings for the global building energy saving. In the middle of the development of passive technology, the government has to effort to the energy saving of buildings by enhanced performance of the window thermal insulation. By the method of enhanced performance of window thermal insulation, the use of vacuum double glazing saves the energy consumption in building. This glazing has low U-value(heat transmission coefficient) than normal double glazing. The vacuum glazing enhanced thermal insulation performance by vacuum space of between the glass and glass. For this vacuum glazing, pillar maintain the space between glass and glass. But this structure cause the raising the heat transmission coefficient in pillar approaching glass. This study confirmed the U-value by the test method of thermal resistance for windows and doors. Also this study confirmed the variation of heat transmission coefficient by the structure of vacuum glazing. And this study measured the surface temperature of the vacuum glazing about pillar approaching glass and vacuum space in cool chamber and hot box. That result, this study confirmed U-value of $0.422W/m^2{\cdot}K$ of vacuum glazing. Also this study confirmed U-value of $0.300{\sim}0.422W/m^2{\cdot}K$ by various the structure of vacuum glazing. And this study confirmed the heat flow in pillar approaching glass.