• Title/Summary/Keyword: Dosimetry

Search Result 743, Processing Time 0.03 seconds

Fingernail electron paramagnetic resonance dosimetry protocol for localized hand exposure accident

  • Jae Seok Kim;Byeong Ryong Park;Minsu Cho;Won Il Jang;Yong Kyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.270-277
    • /
    • 2023
  • Exposure to ionizing radiation induces free radicals in human nails. These free radicals generate a radiation-induced signal (RIS) in electron paramagnetic resonance (EPR) spectroscopy. Compared with the RIS of tooth enamel samples, that in human nails is more affected by moisture and heat, but has the advantages of being sensitive to radiation and easy to collect. The fingernail as a biological sample is applicable in retrospective dosimetry in cases of localized hand exposure accidents. In this study, the dosimetric characteristics of fingernails were analyzed in fingernail clippings collected from Korean donors. The dose response, fading of radiation-induced and mechanically induced signals, treatment method for evaluation of background signal, minimum detectable dose, and minimum detectable mass were investigated to propose a fingernail-EPR dosimetry protocol. In addition, to validate the practicality of the protocol, blind and field experiments were performed in the laboratory and a non-destructive testing facility. The relative biases in the dose assessment result of the blind and field experiments were 8.43% and 21.68% on average between the reference and reconstructed doses. The results of this study suggest that fingernail-EPR dosimetry can be a useful method for the application of retrospective dosimetry in cases of radiological accidents.

DYNAMIC WEDGE의 임상 적용 가능성에 관한 고찰

  • 김영범;정세영;황웅구
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.7 no.1
    • /
    • pp.103-110
    • /
    • 1995
  • Dynamic wedge system has been introduced to modify the beam profile and to make homogeneous isodose curves in the mass of irregular shape. Before the clinical use of dynamic wedge, several factors such as wedge transmission factor, dose profile, percent depth dose, and wedge angle have to be measured quantitatively. Film dosimetry is used to evaluate these factors in this study. A comparison of the result of the dynamic wedge to physical wedge system is made. A positive result for the application of the dynamic wedge to clinic is derived even though there is a limitation in accuracy of the dosimetry system used. To measure all factors quantitatively, more accurate dosimetry systems are required.

  • PDF

Medical Application of Radiation Internal Dosimetry (방사선 내부흡수선량의 의학적 적용)

  • Kim, Kyeong-Min;Lim, Sang-Moo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.164-171
    • /
    • 2008
  • Medical internal radiation dosimetry (MIRD) is an important part of nuclear medicine research field using therapeutic radioisotope. There have been many researches using MIRD for the development of new therapeutic approaches including radiopharmaceutical, clinical protocol, and imaging techniques. Recently, radionuclide therapy has been re-focused as new solution of intractable diseases, through to the advances of previous achievements. In this article, the basic concepts of radiation and internal radiation dosimetry are summarized to help understanding MIRD and its application to clinical application.

PRELIMINARY STUDY OF WATER CONTENTS AND SIGNAL BEHAVIOR IN FINGERNAIL/EPR DOSIMETRY

  • Choi, Hoon;Choi, Sul A;Lee, Byungil
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.185-188
    • /
    • 2013
  • Heating method using electric heater was used to reduce water content in fingernail clippings. Authors found that low water content is helpful to measure EPR signal of fingernail sample with enhanced variability. Generally, natural dehydration happens in normal room condition at least one month and needs much time for using in experiment. So, artificial heating method is applied in this study for time savings. Fingernail samples were tested to find effect of water content to the EPR signal on microwave power levels for dosimetry. Low water content in fingernail reduced variability of EPR signal and makes it possible to measure accurate EPR signal. It also made it possible to measure constant movement of EPR signals on several microwave power levels. Although this method was difficult to apply directly in fingernail/EPR dosimetry, we, authors, believe that this heating method would be useful to differentiate MIS2 and RIS which are generally located at the same g-factor and almost impossible to be identified with each other.

The Performance Test of Teledyne PB-3 Personnel Dosimetry System by Intercomparison Study (국제상호비교검증을 통한 Teledyne PB-3 개인선량계시스템의 성능시험)

  • Lee, Sang-Yoon;Lee, Hyung-Sub;Kim, Jung-Lyul;Yoon, Suk-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.2
    • /
    • pp.133-145
    • /
    • 1994
  • Recently, the Ministry of Science and Technology issued a Ministerial Ordinance (No 1992-15) about the technical criteria on personnel radiation dosimetry. In today's climate, it is important to demonstrate and document that the processor's systems and services to others meet national standards of quality. The purpose of this study is to verify the performance of the Teledyne PB-3 personnel dosimetry system that is generally used in Korea Atomic Energy Research Institute(KAERI) by intercomparison with Oak Ridge National Laboratory. The KAERI has been participated in this personnel dosimetry intercomparison study(PDIS) program since 1991 and it could be possible to test and calibrate personnel monitoring system. This report presents a summary and analysis of by about 50 dose equivalent measurements reported for PDIS-16 through 18 (1991 -1993) with emphasis on neutron dose equivalent sensitivity, accuracy and precision. Relationships of the PDIS results to occupational neutron monitoring and methods to improve personnel dosimetry performance are also discussed.

  • PDF

A New Method for Measuring the Dose Distribution of the Radiotherapy Domain using the IP

  • Homma, Mitsuhiko;Tabushi, Katsuyoshi;Obata, Yasunori;Tamiya, Tadashi;Koyama, Shuji;Kurooka, Masahiko;Shimomura, Kouhei;Ishigaki, Takeo
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.237-240
    • /
    • 2002
  • Knowing the dose distribution in a tissue is as important as being able to measure exposure or absorbed dose in radiotherapy. Since the Dry Imager spread, the wet type automatic processor is no longer used. Furthermore, the waste fluid after film development process brings about a serious problem for prevention of pollution. Therefore, we have developed a measurement method for the dose distribution (CR dosimetry) in the phantom based on the imaging plate (IP) of the computed radiography (CR). The IP was applied for the dose measurement as a dosimeter instead of the film used for film dosimetry. The data from the irradiated IP were processed by a personal computer with 10 bits and were depicted as absorbed dose distributions in the phantom. The image of the dose distribution was obtained from the CR system using the DICOM form. The CR dosimetry is an application of CR system currently employed in medical examinations to dosimetry in radiotherapy. A dose distribution can be easily shown by the Dose Distribution Depiction System we developed this time. Moreover, the measurement method is simpler and a result is obtained more quickly compared with film dosimetry.

  • PDF

Analysis of Small-Field Dosimetry with Various Detectors

  • Park, So-Yeon;Choi, Byeong Geol;Lee, Dong Myung;Jang, Na Young
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.164-172
    • /
    • 2018
  • We evaluated the performance of various detectors for small-field dosimetry with field sizes defined by a high-definition (HD) multileaf collimator (MLC) system. For small-field dosimetry, diodes referred to as "RAZOR detectors," MOSFET detectors, and Gafchromic EBT3 films were used in this study. For field sizes less than $1{\times}1cm^2$, percent depth doses (PDDs) and lateral profiles were measured by diodes, MOSFET detectors, and films, and absolute dosimetry measurements were conducted with MOSFET detectors. For comparison purposes, the same measurements were carried out with a field size of $10{\times}10cm^2$. The dose distributions were calculated by the treatment planning system Eclipse. A comparison of the measurements with calculations yielded the percentage differences. With field sizes less than $1{\times}1cm^2$, it was shown that most of the percentage difference values were within 5% for 6-MV and 15-MV photon beams with the use of diodes. The measured lateral profiles were well matched with those calculated by Eclipse as the field sizes increased. Except for the depths of 0.5 cm and 20 cm, there was agreement in terms of the absolute dosimetry within 10% when MOSFET detectors were used. There was good agreement between the calculations and measurements conducted using diodes and EBT films. Both diode detectors and EBT3 films were found to be appropriate options for relative measurements of PDDs and for lateral profiles.

Comparison of Air Kerma­based and Absorbed Dose to Water­based Protocols in the Dosimetry of High Energy Electron Beams (고 에너지 전자선에 대한 공기커마와 물 흡수선량에 기반한 프로토콜간의 비교)

  • 박창현;신동오;박성용
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.249-258
    • /
    • 2003
  • A few years ago, a proposal was made to change the dosimetry from the air kerma-based reference dosimetry to the absorbed dose-based reference dosimetry for all radiotherapy beams of ionizing radiation to improve the accuracy of dosimetry. Here, we present a dosimetry study in which the two most widespread absorbed dose­based protocols (IAEA TRS­398 and AAPM TG­51) were compared with an air kerma­based protocol (IAEA TRS-277) by measuring the absorbed dose in the same reference depth. Measurements were performed in three clinical electron beam energies using a PTW 30002 cylindrical chamber, and Markus and Roos plane­parallel chambers. $^{60}$ Co calibration factors were obtained from the KFDA. The absorbed dose differences between the air kerma­based and absorbed dose­based protocols were within 2.0% for all chambers in all beams. The results thus show that the obtained absolute dose values will be not significantly altered by changing from the air kerma­based dosimetry to the absorbed dose­based dosimetry. It was also shown that absorbed dose values between the absorbed dose­based protocols agreed by deviations of less than 0.5% for a cylindrical chamber and less than 0.7% for plane­parallel chambers using cross­calibration factors. Although the use of a cylindrical chamber and plane­parallel chambers resulted in a difference of less than 2% for all situations investigated here, to reduce errors, the plane­parallel chambers are recommended for electron energies in which the use of cylindrical chamber is not permitted in each protocol.

  • PDF

Review on Usefulness of EPID (Electronic Portal Imaging Device) (EPID (Electronic Portal Imaging Device)의 유용성에 관한 고찰)

  • Lee, Choong Won;Park, Do Keun;Choi, A Hyun;Ahn, Jong Ho;Song, Ki Weon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.57-67
    • /
    • 2013
  • Purpose: Replacing the film which used to be used for checking the set-up of the patient and dosimetry during radiation therapy, more and more EPID equipped devices are in use at present. Accordingly, this article tried to evaluated the accuracy of the position check-up and the usefulness of dosimetry during the use of an electronic portal imaging device. Materials and Methods: On 50 materials acquired with the search of Korea Society Radiotherapeutic Technology, The Korean Society for Radiation Oncology, and Pubmed using "EPID", "Portal dosimetry", "Portal image", "Dose verification", "Quality control", "Cine mode", "Quality - assurance", and "In vivo dosimetry" as indexes, the usefulness of EPID was analyzed by classifying them as history of EPID and dosimetry, set-up verification and characteristics of EPID. Results: EPID is developed from the first generation of Liquid-filled ionization chamber, through the second generation of Camera-based fluoroscopy, and to the third generation of Amorphous-silicon EPID imaging modes can be divided into EPID mode, Cine mode and Integrated mode. When evaluating absolute dose accuracy of films and EPID, it was found that EPID showed within 1% and EDR2 film showed within 3% errors. It was confirmed that EPID is better in error measurement accuracy than film. When gamma analyzing the dose distribution of the base exposure plane which was calculated from therapy planning system, and planes calculated by EDR2 film and EPID, both film and EPID showed less than 2% of pixels which exceeded 1 at gamma values (r%>1) with in the thresholds such as 3%/3 mm and 2%/2 mm respectively. For the time needed for full course QA in IMRT to compare loads, EDR2 film recorded approximately 110 minutes, and EPID recorded approximately 55 minutes. Conclusion: EPID could easily replace conventional complicated and troublesome film and ionization chamber which used to be used for dosimetry and set-up verification, and it was proved to be very efficient and accurate dosimetry device in quality assurance of IMRT (intensity modulated radiation therapy). As cine mode imaging using EPID allows locating tumors in real-time without additional dose in lung and liver which are mobile according to movements of diaphragm and in rectal cancer patients who have unstable position, it may help to implement the most optimal radiotherapy for patients.

  • PDF