• 제목/요약/키워드: Dosimetric effect

검색결과 51건 처리시간 0.023초

Evaluations of a Commercial CLEANBOLUS-WHITE for Clinical Application

  • Geum Bong Yu;Jung-in Kim;Jaeman Son
    • 한국의학물리학회지:의학물리
    • /
    • 제35권1호
    • /
    • pp.10-15
    • /
    • 2024
  • Purpose: This study aimed to comprehensively investigate the diverse characteristics of a novel commercial bolus, CLEANBOLUS-WHITE (CBW), to ascertain its suitability for clinical application. Methods: The evaluation of CBW encompassed both physical and biological assessments. Physical parameters such as mass density and shore hardness were measured alongside analyses of element composition. Biological evaluations included assessments for skin irritation and cytotoxicity. Dosimetric properties were examined by calculating surface dose and beam quality using a treatment planning system (TPS). Additionally, doses were measured at maximum and reference depths, and the results were compared with those obtained using a solid water phantom. The effect of air gap on dose measurement was also investigated by comparing measured doses on the RANDO phantom, under the bolus, with doses calculated from the TPS. Results: Biological evaluation confirmed that CBW is non-cytotoxic, nonirritant, and non-sensitizing. The bolus exhibited a mass density of 1.02 g/cm3 and 14 shore 00. Dosimetric evaluations revealed that using the 0.5 cm CBW resulted in less than a 1% difference compared to using the solid water phantom. Furthermore, beam quality calculations in the TPS indicated increased surface dose with the bolus. The air gap effect on dose measurement was deemed negligible, with a difference of approximately 1% between calculated and measured doses, aligning with measurement uncertainty. Conclusions: CBW demonstrates outstanding properties for clinical utilization. The dosimetric evaluation underscores a strong agreement between calculated and measured doses, validating its reliability in both planning and clinical settings.

An Empirical Approach to Dosimetric Effect of Carbon Fiber Couch for Flattening Filter Free Beam of Elekta LINAC

  • Ahn, Sohyun;Park, Kwangwoo;Kim, Jinsung;Lee, Ho;Yoon, Jeongmin;Lee, Eungman;Park, Sohyun;Park, Jeongeun;Kim, Juhye;Keum, Ki Chang
    • 한국의학물리학회지:의학물리
    • /
    • 제27권4호
    • /
    • pp.220-223
    • /
    • 2016
  • Generally, it is recommended that the dosimetric effect of carbon fiber couch should be considered especially for an intensity-modulated therapy with a large portion of monitor units from posterior angles. Even a flattening filter free (FFF) beam has been used for stereotactic body radiation therapy (SBRT), the effect of carbon fiber couch for FFF beam is not well known. This work is an effort to evaluate the dosimetric effect of carbon fiber couch for flattened and FFF beam of Elekta linac empirically. The absorbed doses were measured with Farmer type chamber and water-equivalent phantoms with and without couch. And differences of the absorbed doses between with and without couch defined as "couch effect". By comparing calculated dose in treatment planning system (TPS) with measured dose, the optimal density of couch was evaluated. Finally, differences on patient's skin dose and target dose by couch were evaluated in TPS. As a result, the couch effect for 6 and 10 MV flattened beam were -2.71% and -2.32%, respectively. These values were agreed with provided data by vendor within 0.5%. The couch effect for 6 and 10 MV FFF beam were -3.75% and -2.80%, respectively. The patient's skin dose was increased as 18.6% and target dose was decreased as 0.87%, respectively. It was realized that the couch effect of FFF beam was more severe than that of flattened beam. Patient's skin dose and target dose were changed by the couch effect.

Dynamic Wedge의 조직내 방사선량 분포의 특성 (Dosimetric Characteristics of Dynamic Wedge Technique)

  • 오영택;금기창;추성실;김귀언
    • Radiation Oncology Journal
    • /
    • 제14권4호
    • /
    • pp.323-332
    • /
    • 1996
  • 목적 : 방사선 치료에 있어서 조직내 등선량 분포곡선을 변형시킬 목적으로 쐐기 차폐물이 사용되고 있는데 최근 기존의 고정 쐐기와는 다르게 비대칭적인 콜리메이터인 Independent Jaw에 의해 등선량 분포곡선을 변형시키는 동적 쐐기 기법이 실용화 되고 있으나 아직 그 방사선 물리학적인 특성에 대해서는 잘 알려져 있지 않다. 이에 본 저자는 기존의 고정 쐐기와 비교하여 조직내 방사선량 분포의 특성을 알아보고자 본 연구를 계획하였다. 대상 및 방법 : 물 판톰, 폴리 스타이린 판톰, 평균 유방 모형 판톰을 대상으로 전리함, 필름, TLD 등을 이용하여 동적 쐐기와 고정 쐐기의 선량 분포를 측정하여 비교하였다. 방사선원은 선형 가속기의 6MV x선을 사용하였고 $15{\times}15$ 조사면에서 15, 30, 45도 쐐기를 이용하였다 조직내선량 분포는 전리함과 필름 선량계를 사용하였고, 유방 접선 치료방식에서의 반대편 유방 조사선량은 TLD를 사용하였다. 결과 : 1) 조직내 $\%$심도 선량은 고정 쐐기의 경우 심도 선량 깊이가 깊어지는 방사선의 경화 현상이 뚜렷하였으나 동적 쐐기의 경우에는 발견할 수 없었으며 그 $\%$심도선량은 개방 조사면과 유사하였다. 2) 조직내 등선량 분포 곡선을 보면 동적 쐐기의 경우 고정 쐐기와는 달리 원하는 깊이, 원하는 조사면에서 원하는 쐐기 각도를 얻을 수 있었으며 쐐기 각도를 이루는 등선량 분포 곡선이 고정 쐐기에 비해 더욱 직선적이었다. 3) 산란선량은 동적 쐐기의 경우 개방 조사면과 그 양이 거의 동일하였으며 유방보존술에서의 접선 조사방식의 방사선치료에서 고정 쐐기 대신에 동적 쐐기를 사용함으로써 반대측 유방으로의 피폭선량을 감소시킬 수 있었다. 결론적으로 동적 쫴기 기법은 단순히 고정 쐐기를 대체할 수 있을 뿐만 아니라 고정 쐐기의 단점을 보완해 줄 수 있으며 향후 방사선 치료에 있어서 더 다양한 유용성을 가질 수 있으리라 생각한다.

  • PDF

Dosimetric Effects of Air Pocket during Magnetic Resonance-Guided Adaptive Radiation Therapy for Pancreatic Cancer

  • Jin, Hyeongmin;Kim, Dong-Yun;Park, Jong Min;Kang, Hyun-Cheol;Chie, Eui Kyu;An, Hyun Joon
    • 한국의학물리학회지:의학물리
    • /
    • 제30권4호
    • /
    • pp.104-111
    • /
    • 2019
  • Purpose: Online magnetic resonance-guided adaptive radiotherapy (MRgART), an emerging technique, is used to address the change in anatomical structures, such as treatment target region, during the treatment period. However, the electron density map used for dose calculation differs from that for daily treatment, owing to the variation in organ location and, notably, air pockets. In this study, we evaluate the dosimetric effect of electron density override on air pockets during online ART for pancreatic cancer cases. Methods: Five pancreatic cancer patients, who were treated with MRgART at the Seoul National University Hospital, were enrolled in the study. Intensity modulated radiation therapy plans were generated for each patient with 60Co beams on a ViewrayTM system, with a 45 Gy prescription dose for stereotactic body radiation therapy. During the treatment, the electron density map was modified based on the daily MR image. We recalculated the dose distribution on the plan, and the dosimetric parameters were obtained from the dose volume histograms of the planning target volume (PTV) and organs at risk. Results: The average dose difference in the PTV was 0.86Gy, and the observed difference at the maximum dose was up to 2.07 Gy. The variation in air pockets during treatment resulted in an under- or overdose in the PTV. Conclusions: We recommend the re-contouring of the air pockets to deliver an accurate radiation dose to the target in MRgART, even though it is a time-consuming method.

Dosimetric Impact of Ti Mesh on Proton Beam Therapy

  • Cho, Shinhaeng;Goh, Youngmoon;Kim, Chankyu;Kim, Haksoo;Jeong, Jong Hwi;Lim, Young Kyung;Lee, Se Byeong;Shin, Dongho
    • 한국의학물리학회지:의학물리
    • /
    • 제28권4호
    • /
    • pp.144-148
    • /
    • 2017
  • When a high density metallic implant is placed in the path of the proton beam, spatial heterogeneity can be caused due to artifacts in three dimensional (3D) computed tomography (CT) scans. These artifacts result in range uncertainty in dose calculation in treatment planning system (TPS). And this uncertainty may cause significant underdosing to the target volume or overdosing to normal tissue beyond the target. In clinical cases, metal implants must be placed in the beam path in order to preserve organ at risk (OARs) and increase target coverage for tumors. So we should introduce Ti-mesh. In this paper, we measured the lateral dose profile for proton beam using an EBT3 film to confirm dosimetric impact of Ti-mesh when the Ti-mesh plate was placed in the proton beam pathway. The effect of Ti-mesh on the proton beam was investigated by comparing the lateral dose profile calculated from TPS with the film-measured value under the same conditions.

Dosimetric Characteristics of 6 MV Modified Beams by Physical Wedges of a Siemens Linear Accelerator

  • Zabihzadeh, Mansour;Birgani, Mohammad Javad Tahmasebi;Hoseini-Ghahfarokhi, Mojtaba;Arvandi, Sholeh;Hoseini, Seyed Mohammad;Fadaei, Mahbube
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.1685-1689
    • /
    • 2016
  • Physical wedges still can be used as missing tissue compensators or filters to alter the shape of isodose curves in a target volume to reach an optimal radiotherapy plan without creating a hotspot. The aim of this study was to investigate the dosimetric properties of physical wedges filters such as off-axis photon fluence, photon spectrum, output factor and half value layer. The photon beam quality of a 6 MV Primus Siemens modified by 150 and 450 physical wedges was studied with BEAMnrc Monte Carlo (MC) code. The calculated present depth dose and dose profile curves for open and wedged photon beam were in good agreement with the measurements. Increase of wedge angle increased the beam hardening and this effect was more pronounced at the heal region. Using such an accurate MC model to determine of wedge factors and implementation of it as a calculation algorithm in the future treatment planning systems is recommended.

An Epithermal Neutron Beam Design for BNCT Using $^2H(d,n)^3He$ Reaction

  • Han, Chi-Young;Kim, Jong-Kyung;Chung, Kyu-Sun
    • Nuclear Engineering and Technology
    • /
    • 제31권5호
    • /
    • pp.512-521
    • /
    • 1999
  • A feasibility study was performed to design an epithermal neutron beam for BNCT using the neutron of 2.45 MeV on the average produced from $^2H(d,n)^3$He reaction induced by plasma focus in the z-pinch instead of the conventional accelerator-based $^3H(d, n)^4$He neutron generator. Flux and spectrum were analyzed to use these neutrons as the neutron source for BNCT. Neutronic characteristics of several candidate materials in this neutron source were investigated Using MCNP Code, and $^7LiF$ ; 40%Al + 60%$AIF_3$, and Pb Were determined as moderator, filter, and reflector in an epithermal neutron beam design for BNCT, respectively. The skin-skull-brain ellipsoidal phantom, which consists of homogeneous regions of skin-, bone-, or brain-equivalent material, was used in order to assess the dosimetric effect in brain. An epithermal neutron beam design for BNCT was proposed by the repeated work with MCNP runs, and the dosimetric properties (AD, AR, ADDR, and Dose Components) calculated within the phantom showed that the neutron beam designed in this work is effective in tumor therapy. If the neutron source flux is high enough using the z-pinch plasma, BNCT using the neutron source produced from $^2H(d,n)^3$He reaction will be very feasible.

  • PDF

FTIR study of gamma and electron irradiated high-density polyethylene for high dose measurements

  • Al-Ghamdi, Hanan;Farah, Khaled;Almuqrin, Aljawharah;Hosni, Faouzi
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.255-261
    • /
    • 2022
  • A reliable and well-characterized dosimetry system which is traceable to the international measurement system, is the key element to quality assurance in radiation processing with cobalt-60 gamma rays, X-rays, and electron beam. This is specifically the case for health-regulated processes, such as the radiation sterilization of single use medical devices and food irradiation for preservation and disinfestation. Polyethylene is considered to possess a lot of interesting dosimetric characteristics. In this work, a detailed study has been performed to determine the dosimetric characteristics of a commercialized high-density polyethylene (HDPE) film using Fourier transformed infrared spectrometry (FTIR). Correlations have been established between the absorbed dose and radiation induced infrared absorption in polyethylene having a maximum at 965 cm-1 (transvinylene band) and 1716 cm-1 (ketone-carbonyl band). We have found that polyethylene dose-response is linear with dose for both bands up to1000 kGy. For transvinylene band, the dose-response is more sensitive if irradiations are made in helium. While, for ketone-carbonyl band, the dose-response is more sensitive when irradiations are carried out in air. The dose-rate effect has been found to be negligible when polyethylene samples are irradiated with electron beam high dose rates. The irradiated polyethylene is relatively stable for several weeks after irradiation.

Dosimetric and Clinical Predictors of Acute Esophagitis in Lung Cancer Patients in Turkey Treated with Radiotherapy

  • Etiz, Durmus;Bayman, Evrim;Akcay, Melek;Sahin, Bilgehan;Bal, Cengiz
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권7호
    • /
    • pp.4223-4228
    • /
    • 2013
  • Background: The purpose of this study was to determine the clinical and dosimetric factors associated with acute esophagitis (AE) in lung cancer patients treated with conformal radiotherapy (RT) in Turkey. Materials and Methods: In this retrospective review 104 lung cancer patients were examined. Esophagitis grades were verified weekly during treatment, and at 1 week, and 1 and 2 months afterwards. The clinical parameters included patient age, gender, tumor pathology, number of chemotherapy treatments before RT, concurrent chemotherapy, radiation dose, tumor response to RT, tumor localization, interruption of RT, weight loss, tumor and nodal stage and tumor volume. The following dosimetric parameters were analyzed for correlation of AE: The maximum ($D_{max}$) and mean ($D_{mean}$) doses delivered to the esophagus, the percentage of esophagus volume receiving ${\geq}10$ Gy ($V_{10}$), ${\geq}20$ Gy ($V_{20}$), ${\geq}30$ Gy ($V_{30}$), ${\geq}35$ Gy ($V_{35}$), ${\geq}40$ Gy ($V_{40}$), ${\geq}45$ Gy ($V_{45}$), ${\geq}50$ Gy ($V_{50}$) and ${\geq}60$ Gy ($V_{60}$). Results: Fifty-five patients (52.9%) developed AE. Maximum grades of AE were recorded: Grade 1 in 51 patients (49%), and Grade 2 in 4 patients (3.8%). Clinical factors had no statistically significant influence on the incidence of AE. In terms of dosimetric findings, correlation analyses demonstrated a significant association between AE and $D_{max}$ (>5117 cGy), $D_{mean}$ (>1487 cGy) and $V_{10-60}$ (percentage of volume receiving >10 to 60 Gy). The most significant relationship between RT and esophagitis were in $D_{max}$ (>5117 cGy) (p=0.002) and percentage of esophageal volume receiving >30 Gy ($V_{30}$ >31%) (p=0.008) in the logistic regression analysis. Conclusions: The maximum dose esophagus greater than 5117 cGy and approximately one third (31%) of the esophageal volume receiving >30 Gy was the most statistically significant predictive factor associated with esophagitis due to RT.

Evaluation of Dosimetric Effect and Treatment Time by Plan Parameters for Endobronchial Brachytherapy

  • Choi, Chang Heon;Park, Jong Min;Park, So-Yeon;Kang, SungHee;Cho, Jin Dong;Kim, Jung-in
    • 한국의학물리학회지:의학물리
    • /
    • 제28권2호
    • /
    • pp.39-44
    • /
    • 2017
  • This study aims to analyze dose distribution and treatment time of endobronchial brachytherapy (EBBT) by changing the position step size of the dwell position. A solid water phantom and an intraluminal catheter were used in the treatment plan. The treatment plans were generated for 3, 5, 7, and 10 cm treatment lengths, respectively. For each treatment length, the source position step sizes were set as 2.5, 5, and 10 mm. Three reference points were set 1 cm away from the central axis of the catheter, along the axis, for uniform dose distribution. Volumetric dose distribution was calculated to evaluate the dosimetric effect. The total radiation delivery time and total dwell time were estimated for treatment efficiency, which were increased with position step sizes. At half-life time, the differences between the position step sizes in the total radiation delivery time were 18.1, 15.4, 18.0, and 24.0 s for 3, 5, 7, and 10 cm treatment lengths, respectively. The dose distributions were more homogenous by increasing the position step sizes. The dose difference of the reference point was less than 10%. In brachytherapy, this difference can be negligible. For EBBT, the treatment time is the key factor while considering the patient status. To reduce the total treatment time, EBBT can be performed with 2.5 mm position step size.