• Title/Summary/Keyword: Dosimetric Parameters

Search Result 76, Processing Time 0.025 seconds

Clinical Impact of Patient's Head Position in Supraclavicular Irradiation of the Whole Breast Radiotherapy

  • Surega Anbumani;Lohith G. Reddy;Priyadarshini V;Sasikala P;Ramesh S. Bilimagga
    • Progress in Medical Physics
    • /
    • v.34 no.1
    • /
    • pp.10-13
    • /
    • 2023
  • Patients with breast cancer can be positioned with their head turned to the contra lateral side or with their head straight during the radiation therapy treatment set-up. In our hospital, patients with locally advanced breast cancer who were receiving radiation therapy have experienced swallowing difficulty after 2 weeks of irradiation. In this pilot study, the impact of head position on reducing dysphagia occurrence was dosimetrically evaluated. Patients were divided into two groups viz., HT (head turned to the contra lateral side of the breast) and HS (head straight) with 10 members in each. Treatment planning was performed, and the dosimetric parameters such as Dmin, Dmax, Dmean, V5, V10, V20, V30, V40, and V50 of both groups were extracted from the dose volume histogram (DVH) of esophagus. The target coverage in the supraclavicular fossa (SCF) region was analyzed using D95 and D98; moreover, the dose heterogeneity was assessed with D2 from the DVHs. The average values of the dose volume parameters were 27.6%, 58.6%, 35.4%, 19%, 13.8%, 14.1%, 11.8%, 8.4%, and 8.1% higher in the HT group compared with those in the HS group. Furthermore, for the SCF, the mean values of D98, D95, and D2 were 42.4, 47.5, and 54 Gy, respectively, in the HS group and 38.9, 45.35, and 55.5 Gy, respectively, in the HT group. This pilot study attempts to give a solution for the poor quality of life of patients after breast radiotherapy due to dysphagia. The findings confirm that the head position could play a significant role in alleviating esophageal toxicity without compromising tumor control.

Comparative Evaluation of Two-dimensional Radiography and Three Dimensional Computed Tomography Based Dose-volume Parameters for High-dose-rate Intracavitary Brachytherapy of Cervical Cancer: A Prospective Study

  • Madan, Renu;Pathy, Sushmita;Subramani, Vellaiyan;Sharma, Seema;Mohanti, Bidhu Kalyan;Chander, Subhash;Thulkar, Sanjay;Kumar, Lalit;Dadhwal, Vatsla
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4717-4721
    • /
    • 2014
  • Background: Dosimetric comparison of two dimensional (2D) radiography and three-dimensional computed tomography (3D-CT) based dose distributions with high-dose-rate (HDR) intracavitry radiotherapy (ICRT) for carcinoma cervix, in terms of target coverage and doses to bladder and rectum. Materials and Methods: Sixty four sessions of HDR ICRT were performed in 22 patients. External beam radiotherapy to pelvis at a dose of 50 Gray in 27 fractions followed by HDR ICRT, 21 Grays to point A in 3 sessions, one week apart was planned. All patients underwent 2D-orthogonal and 3D-CT simulation for each session. Treatment plans were generated using 2D-orthogonal images and dose prescription was made at point A. 3D plans were generated using 3D-CT images after delineating target volume and organs at risk. Comparative evaluation of 2D and 3D treatment planning was made for each session in terms of target coverage (dose received by 90%, 95% and 100% of the target volume: D90, D95 and D100 respectively) and doses to bladder and rectum: ICRU-38 bladder and rectum point dose in 2D planning and dose to 0.1cc, 1cc, 2cc, 5cc, and 10cc of bladder and rectum in 3D planning. Results: Mean doses received by 100% and 90% of the target volume were $4.24{\pm}0.63$ and $4.9{\pm}0.56$ Gy respectively. Doses received by 0.1cc, 1cc and 2cc volume of bladder were $2.88{\pm}0.72$, $2.5{\pm}0.65$ and $2.2{\pm}0.57$ times more than the ICRU bladder reference point. Similarly, doses received by 0.1cc, 1cc and 2cc of rectum were $1.80{\pm}0.5$, $1.48{\pm}0.41$ and $1.35{\pm}0.37$ times higher than ICRU rectal reference point. Conclusions: Dosimetric comparative evaluation of 2D and 3D CT based treatment planning for the same brachytherapy session demonstrates underestimation of OAR doses and overestimation of target coverage in 2D treatment planning.

Evaluation of the hybrid-dynamic conformal arc therapy technique for radiotherapy of lung cancer

  • Kim, Sung Joon;Lee, Jeong Won;Kang, Min Kyu;Kim, Jae-Chul;Lee, Jeong Eun;Park, Shin-Hyung;Kim, Mi Young;Lee, Seoung-Jun;Moon, Soo-Ho;Ko, Byoung-Soo
    • Radiation Oncology Journal
    • /
    • v.36 no.3
    • /
    • pp.241-247
    • /
    • 2018
  • Purpose: A hybrid-dynamic conformal arc therapy (HDCAT) technique consisting of a single half-rotated dynamic conformal arc beam and static field-in-field beams in two directions was designed and evaluated in terms of dosimetric benefits for radiotherapy of lung cancer. Materials and Methods: This planning study was performed in 20 lung cancer cases treated with the VERO system (BrainLAB AG, Feldkirchen, Germany). Dosimetric parameters of HDCAT plans were compared with those of three-dimensional conformal radiotherapy (3D-CRT) plans in terms of target volume coverage, dose conformity, and sparing of organs at risk. Results: HDCAT showed better dose conformity compared with 3D-CRT (conformity index: 0.74 ± 0.06 vs. 0.62 ± 0.06, p < 0.001). HDCAT significantly reduced the lung volume receiving more than 20 Gy (V20: 21.4% ± 8.2% vs. 24.5% ± 8.8%, p < 0.001; V30: 14.2% ± 6.1% vs. 15.1% ± 6.4%, p = 0.02; V40: 8.8% ± 3.9% vs. 10.3% ± 4.5%, p < 0.001; and V50: 5.7% ± 2.7% vs. 7.1% ± 3.2%, p < 0.001), V40 and V50 of the heart (V40: 5.2 ± 3.9 Gy vs. 7.6 ± 5.5 Gy, p < 0.001; V50: 1.8 ± 1.6 Gy vs. 3.1 ± 2.8 Gy, p = 0.001), and the maximum spinal cord dose (34.8 ± 9.4 Gy vs. 42.5 ± 7.8 Gy, p < 0.001) compared with 3D-CRT. Conclusions: HDCAT could achieve highly conformal target coverage and reduce the doses to critical organs such as the lung, heart, and spinal cord compared to 3D-CRT for the treatment of lung cancer patients.

Comparison of Dosimetric Parameters of Patient with Large and Pendulous Breast Receiving Breast Radiotherapy in the Prone versus Supine Position (유방 크기가 큰 유방암 환자의 방사선 치료 시 환자의 자세에 따른 선량 비교)

  • Moon, Sun Young;Yoon, Myonggeun;Chung, Weon Kuu;Chung, Mijoo;Shin, Dong Oh;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.234-240
    • /
    • 2015
  • The purpose of this study is to analyze dosimetric parameters of patient with large and pendulous breast receiving breast radiotherapy in the prone versus supine position. The patient underwent computed tomography simulation in both prone and supine position. The homogeneity index (HI), conformity index (CI), coverage index (CVI) to the left breast as planning target volume (PTV) and the doses to the lung, heart, and right breast as organ at risk (OAR) were compared by using dose-volume histogram. The lifetime attributable risk (LAR) according to the prone and supine position was measured for the lung and right breast. The HI, CI of the PTV decreased 21.7%, 6.49%, respectively and the CVI increased 10.8% with the prone position. The mean and maximum dose to the left lung decreased 91.6%, 87.0%, respectively and the volume parameters also decreased over 99% with the prone position. The parameters to the right lung were same regardless of the position. The mean and maximum dose to the heart decreased 51.6%, 14.2% with the prone position. But the mean and maximum dose to the right breast increased unlike the other OARs. The LARs to the lung decreased 80.3% (left), 24.2% (right) but the LAR to the right breast doubled with the prone position. The prone position is a favorable alternative for irradiation of breast in patients with large and pendulous breasts.

Estimation of Jaw and MLC Transmission Factor Obtained by the Auto-modeling Process in the Pinnacle3 Treatment Planning System (피나클치료계획시스템에서 자동모델화과정으로 얻은 Jaw와 다엽콜리메이터의 투과 계수 평가)

  • Hwang, Tae-Jin;Kang, Sei-Kwon;Cheong, Kwang-Ho;Park, So-Ah;Lee, Me-Yeon;Kim, Kyoung-Ju;Oh, Do-Hoon;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.269-276
    • /
    • 2009
  • Radiation treatment techniques using photon beam such as three-dimensional conformal radiation therapy (3D-CRT) as well as intensity modulated radiotherapy treatment (IMRT) demand accurate dose calculation in order to increase target coverage and spare healthy tissue. Both jaw collimator and multi-leaf collimators (MLCs) for photon beams have been used to achieve such goals. In the Pinnacle3 treatment planning system (TPS), which we are using in our clinics, a set of model parameters like jaw collimator transmission factor (JTF) and MLC transmission factor (MLCTF) are determined from the measured data because it is using a model-based photon dose algorithm. However, model parameters obtained by this auto-modeling process can be different from those by direct measurement, which can have a dosimetric effect on the dose distribution. In this paper we estimated JTF and MLCTF obtained by the auto-modeling process in the Pinnacle3 TPS. At first, we obtained JTF and MLCTF by direct measurement, which were the ratio of the output at the reference depth under the closed jaw collimator (MLCs for MLCTF) to that at the same depth with the field size $10{\times}10\;cm^2$ in the water phantom. And then JTF and MLCTF were also obtained by auto-modeling process. And we evaluated the dose difference through phantom and patient study in the 3D-CRT plan. For direct measurement, JTF was 0.001966 for 6 MV and 0.002971 for 10 MV, and MLCTF was 0.01657 for 6 MV and 0.01925 for 10 MV. On the other hand, for auto-modeling process, JTF was 0.001983 for 6 MV and 0.010431 for 10 MV, and MLCTF was 0.00188 for 6 MV and 0.00453 for 10 MV. JTF and MLCTF by direct measurement were very different from those by auto-modeling process and even more reasonable considering each beam quality of 6 MV and 10 MV. These different parameters affect the dose in the low-dose region. Since the wrong estimation of JTF and MLCTF can lead some dosimetric error, comparison of direct measurement and auto-modeling of JTF and MLCTF would be helpful during the beam commissioning.

  • PDF

Dosimetric Effect on Selectable Optimization Parameters of Volumatric Modulated Arc Therapy (선택적 최적화 변수(Selectable Optimization Parameters)에 따른 부피적조절회전방사선치료(VMAT)의 선량학적 영향)

  • Jung, Jae-Yong;Shin, Yong-Joo;Sohn, Seung-Chang;Kim, Yeon-Rae;Min, Jung-Wan;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.15-25
    • /
    • 2012
  • The aim of this study is to evaluate plan quality and dose accuracy for Volumetric Modulated Arc Therapy (VMAT) on the TG-119 and is to investigate the effects on variation of the selectable optimization parameters of VMAT. VMAT treatment planning was implemented on a Varian iX linear accelerator with ARIA record and verify system (Varian Mecical System Palo Alto, CA) and Oncentra MasterPlan treatment planning system (Nucletron BV, Veenendaal, Netherlands). Plan quality and dosimetric accuracy were evaluated by effect of varying a number of arc, gantry spacing and delivery time for the test geometries provided in TG-119. Plan quality for the target and OAR was evaluated by the mean value and the standard deviation of the Dose Volume Histograms (DVHs). The ionization chamber and $Delta^{4PT}$ bi-planar diode array were used for the dose evaluation. For treatment planning evaluation, all structure sets closed to the goals in the case of single arc, except for the C-shape (hard), and all structure sets achieved the goals in the case of dual arc, except for C-shape (hard). For the variation of a number of arc, the simple structure such as a prostate did not have the difference between single arc and dual arc, whereas the complex structure such as a head and neck showed a superior result in the case of dual arc. The dose distribution with gantry spacing of $4^{\circ}$ was shown better plan quality than the gantry spacing of $6^{\circ}$, but was similar results compared with gantry spacing of $2^{\circ}$. For the verification of dose accuracy with single arc and dual arc, the mean value of a relative error between measured and calculated value were within 3% and 4% for point dose and confidence limit values, respectively. For the verification on dose accuracy with the gantry intervals of $2^{\circ}$, $4^{\circ}$ and $6^{\circ}$, the mean values of relative error were within 3% and 5% for point dose and confidence limit values, respectively. In the verification of dose distribution with $Delta^{4PT}$ bi-planar diode array, gamma passing rate was $98.72{\pm}1.52%$ and $98.3{\pm}1.5%$ for single arc and dual arc, respectively. The confidence limit values were within 4%. The smaller the gantry spacing, the more accuracy results were shown. In this study, we performed the VMAT QA based on TG-119 procedure, and demonstrated that all structure sets were satisfied with acceptance criteria. And also, the results for the selective optimization variables informed the importance of selection for the suitable variables according to the clinical cases.

Cardiac dose reduction with breathing adapted radiotherapy using self respiration monitoring system for left-sided breast cancer

  • Sung, KiHoon;Lee, Kyu Chan;Lee, Seung Heon;Ahn, So Hyun;Lee, Seok Ho;Choi, Jinho
    • Radiation Oncology Journal
    • /
    • v.32 no.2
    • /
    • pp.84-94
    • /
    • 2014
  • Purpose: To quantify the cardiac dose reduction during breathing adapted radiotherapy using Real-time Position Management (RPM) system in the treatment of left-sided breast cancer. Materials and Methods: Twenty-two patients with left-sided breast cancer underwent CT scans during breathing maneuvers including free breathing (FB), deep inspiration breath-hold (DIBH), and end inspiration breath-hold (EIBH). The RPM system was used to monitor respiratory motion, and the in-house self respiration monitoring (SRM) system was used for visual feedback. For each scan, treatment plans were generated and dosimetric parameters from DIBH and EIBH plans were compared to those of FB plans. Results: All patients completed CT scans with different breathing maneuvers. When compared with FB plans, DIBH plans demonstrated significant reductions in irradiated heart volume and the heart $V_{25}$, with the relative reduction of 71% and 70%, respectively (p < 0.001). EIBH plans also resulted in significantly smaller irradiated heart volume and lower heart $V_{25}$ than FB plans, with the relative reduction of 39% and 37%, respectively (p = 0.002). Despite of significant expansion of lung volume using inspiration breath-hold, there were no significant differences in left lung $V_{25}$ among the three plans. Conclusion: In comparison with FB, both DIBH and EIBH plans demonstrated a significant reduction of radiation dose to the heart. In the training course, SRM system was useful and effective in terms of positional reproducibility and patient compliance.

Endoscopic findings of rectal mucosal damage after pelvic radiotherapy for cervical carcinoma: correlation of rectal mucosal damage with radiation dose and clinical symptoms

  • Kim, Tae Gyu;Huh, Seung Jae;Park, Won
    • Radiation Oncology Journal
    • /
    • v.31 no.2
    • /
    • pp.81-87
    • /
    • 2013
  • Purpose: To describe chronic rectal mucosal damage after pelvic radiotherapy (RT) for cervical cancer and correlate these findings with clinical symptoms and radiation dose. Materials and Methods: Thirty-two patients who underwent pelvic RT were diagnosed with radiation-induced proctitis based on endoscopy findings. The median follow-up period was 35 months after external beam radiotherapy (EBRT) and intracavitary radiotherapy (ICR). The Vienna Rectoscopy Score (VRS) was used to describe the endoscopic findings and compared to the European Organization for Research and Treatment of Cancer (EORTC)/Radiation Therapy Oncology Group (RTOG) morbidity score and the dosimetric parameters of RT (the ratio of rectal dose calculated at the rectal point [RP] to the prescribed dose, biologically effective dose [BED] at the RP in the ICR and EBRT plans, ${\alpha}/{\beta}$ = 3). Results: Rectal symptoms were noted in 28 patients (rectal bleeding in 21 patients, bowel habit changes in 6, mucosal stools in 1), and 4 patients had no symptoms. Endoscopic findings included telangiectasia in 18 patients, congested mucosa in 20, ulceration in 5, and stricture in 1. The RP ratio, $BED_{ICR}$, $BED_{ICR+EBRT}$ was significantly associated with the VRS (RP ratio, median 76.5%; $BED_{ICR}$, median 37.1 $Gy_3$; $BED_{ICR+EBRT}$, median 102.5 $Gy_3$; p < 0.001). The VRS was significantly associated with the EORTC/RTOG score (p = 0.038). Conclusion: The most prevalent endoscopic findings of RT-induced proctitis were telangiectasia and congested mucosa. The VRS was significantly associated with the EORTC/RTOG score and RP radiation dose.

Fast Neutron Dosimetry in Criticality Accidents (핵임계사고시(核臨界事故時)에 있어서 속중성자선량(速中性子線量)의 해석(解析))

  • Ro, Seung-Gy;Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 1976
  • A suggestion has been made for neutron dosimetric techniques using activation and threshold detectors in criticality accidents. Neutron dosimetrical parameters, namely, the fission spectrum-averaged cross-sections of some threshold reactions and fluence-to-dose conversion factors have been calculated by the use of an electronic computer. It appears that detectors having comparatively high threshold energy give more fine information on spectral deformation in criticality accidents, while detectors with low threshold energy are of usefulness for measuring fast neutron fluence regardless of fissioning types. Unexpectedly it is found that the fission spectrum-averaged cross sections of the $^{32}S(n,\;p)^{32}P$ reaction is not sensitive to analytical forms of fission neutron spectrum: the modified Cran-berg and Maxwellian forms. In addition, the fluence-to-dose conversion factors seem to be insensitive to both spectral functions and fissioning types.

  • PDF

A Study of Small Radiation Dosimeter by Using Microfilm and Carbon Elecrtode (마이크로필름과 탄소막 전극을 이용한 소형방사선측정기 개발에 관한 연구)

  • 신교철;윤형근
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.59-62
    • /
    • 2004
  • We developed very small parallel plate radiation detector by using our existing experience of mating radiation dosimeter and capability of analyzing characteristics of dosimeter. The radiation detector was consisted of microfilm and carbon electrode. The detector was parallel plate type of all-filled ionization chamber. The ionization chamber had been fabricated using an acrylic plate for the air cavity and carbon coated microfilm for electrical configuration. The alr gap between two electrodes was 0.48 mm. The diameters of collect electrode and guard electrode were 3.3 mm, 5 mm respectively. The diameter of high voltage electrode was 5 mm. Nominal sensitive volume of the chamber was 0.016 ㎤. The major parameters of the chamber characteristics such as leakage current, reproducibility, dose rate effect, and polarity effect were measured. The experimental results were as followings. Leakage current was 0.1 pA. Standard deviation of reproducibility was less than 0.1%. Dose rate effect was less than 1.5%. Polarity effect was less than 2.4%. These data were comparable to those of commercially available dosimetric system for QA-purpose. As the result, we found that the radiation detector consisting of the ionization chamber, microfilm and carbon electrode, was satisfactory for the purpose of the small field dosimetry in size and characteristics. In the future, We will try to refine the dosimeter for use in very small volume.

  • PDF