• Title/Summary/Keyword: Dose simulation

Search Result 594, Processing Time 0.027 seconds

The Comparative Analysis of External Dose Reconstruction in EPID and Internal Dose Measurement Using Monte Carlo Simulation (몬테 카를로 전산모사를 통한 EPID의 외부적 선량 재구성과 내부 선량 계측과의 비교 및 분석)

  • Jung, Joo-Young;Yoon, Do-Kun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.253-258
    • /
    • 2013
  • The purpose of this study is to evaluate and analyze the relationship between the external radiation dose reconstruction which is transmitted from the patient who receives radiation treatment through electronic portal imaging device (EPID) and the internal dose derived from the Monte Carlo simulation. As a comparative analysis of the two cases, it is performed to provide a basic indicator for similar studies. The geometric information of the experiment and that of the radiation source were entered into Monte Carlo n-particle (MCNPX) which is the computer simulation tool and to derive the EPID images, a tally card in MCNPX was used for visualizing and the imaging of the dose information. We set to source to surface distance (SSD) 100 cm for internal measurement and EPID. And the water phantom was set to be 100 cm of the source to surface distance (SSD) for the internal measurement and EPID was set to 90 cm of SSD which is 10 cm below. The internal dose was collected from the water phantom by using mesh tally function in MCNPX, accumulated dose data was acquired by four-portal beam exposures. At the same time, after getting the dose which had been passed through water phantom, dose reconstruction was performed using back-projection method. In order to analyze about two cases, we compared the penetrated dose by calibration of itself with the absorbed one. We also evaluated the reconstructed dose using EPID and partially accumulated (overlapped) dose in water phantom by four-portal beam exposures. The sum dose data of two cases were calculated as each 3.4580 MeV/g (absorbed dose in water) and 3.4354 MeV/g (EPID reconstruction). The result of sum dose match from two cases shows good agreement with 0.6536% dose error.

Evaluation Absorbed Dose During the Breast Cancer Brachytherapy in Canine Phantom (반려견 팬텀에서 유방암 근접방사선치료 시 흡수선량 평가)

  • Kim, Jung-Hoon;Lee, Deuk-Hee
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.523-528
    • /
    • 2020
  • The application of breast cancer, which has the highest incidence in females among cancer that is the number one cause of death for dogs, was to be evaluated the absorbed dose during brachytherapy using simulation. MCNPX program was used for simulation, and a small size canine phantom was produced to measure absorbed dose. The results of the absorbed dose was the highest at 192Ir to 1.02E-12 Gy/# for tumors, and the same tendency was shown for internal and external absorbed dose. Therefore, the selection of appropriate sources for dog breast cancer should be considered in brachytherapy, taking into account dog breeds and exposures.

Study on Characteristics of Dose Distribution in Tissue of High Energy Electron Beam for Radiation Therapy (방사선 치료용 고에너지 전자선의 조직 내 선량분포 특성에 관한 연구)

  • Na, Soo-Kyung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.175-186
    • /
    • 2002
  • The purpose of this study is directly measure and evaluate about absorbed dose change according to nominal energy and electron cone or medical accelerator on isodose curve, percentage depth dose, contaminated X-ray, inhomogeneous tissue, oblique surface and irradiation on intracavitary that electron beam with high energy distributed in tissue, and it settled standard data of hish energy electron beam treatment, and offer to exactly data for new dote distribution modeling study based on experimental resuls and theory. Electron beam with hish energy of $6{\sim}20$ MeV is used that generated from medical linear accelerator (Clinac 2100C/D, Varian) for the experiment, andwater phantom and Farmer chamber md Markus chamber und for absorbe d dose measurement of electron beam, and standard absorbed dose is calculated by standard measurements of International Atomic Energy Agency(IAEA) TRS 277. Dose analyzer (700i dose distribution analyzer, Wellhofer), film (X-OmatV, Kodak), external cone, intracavitary cone, cork, animal compact bone and air were used for don distribution measurement. As the results of absorbed dose ratio increased while irradiation field was increased, it appeared maximum at some irradiation field size and decreased though irradiation field size was more increased, and it decreased greatly while energy of electron beam was increased, and scattered dose on wall of electron cone was the cause. In percentage depth dose curve of electron beam, Effective depth dose(R80) for nominal energy of 6, 9, 12, 16 and 20 MeV are 1.85, 2.93, 4.07, 5.37 and 6.53 cm respectively, which seems to be one third of electron beam energy (MeV). Contaminated X-ray was generated from interaction between electron beam with high energy and material, and it was about $0.3{\sim}2.3\%$ of maximum dose and increased with increasing energy. Change of depth dose ratio of electron beam was compared with theory by Monte Carlo simulation, and calculation and measured value by Pencil beam model reciprocally, and percentage depth dose and measured value by Pencil beam were agreed almost, however, there were a little lack on build up area and error increased in pendulum and multi treatment since there was no contaminated X-ray part. Percentage depth dose calculated by Monte Carlo simulation appeared to be less from all part except maximum dose area from the curve. The change of percentage depth dose by inhomogeneous tissue, maximum range after penetration the 1 cm bone was moved 1 cm toward to surface then polystyrene phantom. In case of 1 cm and 2 cm cork, it was moved 0.5 cm and 1 cm toward to depth, respectively. In case of air, practical range was extended toward depth without energy loss. Irradiation on intracavitary is using straight and beveled type cones of 2.5, 3.0, 3.5 $cm{\phi}$, and maximum and effective $80\%$ dose depth increases while electron beam energy and size of electron cone increase. In case of contaminated X-ray, as the energy increase, straight type cones were more highly appeared then beveled type. The output factor of intracavitary small field electron cone was $15{\sim}86\%$ of standard external electron cone($15{\times}15cm^2$) and straight type was slightly higher then beveled type.

  • PDF

A Dynamic Accuracy Estimation for GPU-based Monte Carlo Simulation in Tissue Optics

  • Cai, Fuhong;Lu, Wen
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.551-555
    • /
    • 2017
  • Tissue optics is a well-established and extensively studied area. In the last decades, Monte Carlo simulation (MCS) has been one of the standard tools for simulation of light propagation in turbid media. The utilization of parallel processing exhibits dramatic increase in the speed of MCS's of photon migration. Some calculations based on MCS can be completed within a few seconds. Since the MCS's have the potential to become a real time calculation method, a dynamic accuracy estimation, which is also known as history by history statistical estimators, is required in the simulation code to automatically terminate the MCS as the results' accuracy achieves a high enough level. In this work, spatial and time-domain GPU-based MCS, adopting the dynamic accuracy estimation, are performed to calculate the light dose/reflectance in homogeneous and heterogeneous tissue media. This dynamic accuracy estimation can effectively derive the statistical error of optical dose/reflectance during the parallel Monte Carlo process.

The Effect of Therapy Oriented CT in Radiation Therapy Planning (치료 계획용 전산화 단층촬영이 방사선 치료계획에 미치는 효과)

  • Kim, Sung-Kyu;Shin, Sei-One;Kim, Myung-Se
    • Radiation Oncology Journal
    • /
    • v.5 no.2
    • /
    • pp.149-155
    • /
    • 1987
  • The success of radioation therapy depends on exact treatment of the tumor with significant high dose for maximizing local control and excluding the normal tissues for minimizing unwanted complications. To achieve these goals, correct estimation of target volume in three dimension, exact dose distribution in tumor and normal critical structures and correction of tissue inhomogeneity are required. The effect of therapy oriented CT (plannng CT) were compared with conventional simulation method in necessity of planning change, set dose, and proper distribution of tumor dose. Of 365 new patients examined, planning CT was performed in 104 patients $(28\%)$. Treatment planning was changed in $47\%$ of head and neck tumor, $79\%$ of intrathoracic tumor and $63\%$ of abdmonial tumor. in breast cancer and musculoskeletal tumors, planning CT was recommended for selection of adequate energy and calculation of exact dose to critical structures such as kidney or spinal cord. The average difference of tumor doses between CT planning and conventional simulation was $10\%$ in intrathoracic and intra-abdominal tumors but $20\%$ in head and neck tumors which suggested that tumor dose may be overestimated in conventional simulation Although some limitations and disadvantages including the cost and irradiation during CT are still criticizing, our study showed that CT Planning is very helpful in radiotherapy Planning.

  • PDF

Maximum Tolerated Dose Estimate by Curve Fitting in Phase I Clinical Trial (제1상 임상시험에서 곡선적합을 이용한 MTD 추정법)

  • Heo, Eun-Ha;Kim, Dong-Jae
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.2
    • /
    • pp.179-187
    • /
    • 2011
  • The purpose of a Phase I clinical trial is to estimate the maximum tolerated dose, MTD, of a new drug. In this paper, the MTD estimation method is suggested by curve fitting the dose-toxicity data to an S-shaped curve. The suggested MTD estimation method is compared with established MTD estimation procedures using a Monte Carlo simulation study.

Organ dose conversion coefficients in CT scans for Korean adult males and females

  • Lee, Choonsik;Won, Tristan;Yeom, Yeon Soo;Griffin, Keith;Lee, Choonik;Kim, Kwang Pyo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.681-688
    • /
    • 2022
  • Dose monitoring in CT patients requires accurate dose estimation but most of the CT dose calculation tools are based on Caucasian computational phantoms. We established a library of organ dose conversion coefficients for Korean adults by using four Korean adult male and two female voxel phantoms combined with Monte Carlo simulation techniques. We calculated organ dose conversion coefficients for head, chest, abdomen and pelvis, and chest-abdomen-pelvis scans, and compared the results with the existing data calculated from Caucasian phantoms. We derived representative organ doses for Korean adults using Korean CT dose surveys combined with the dose conversion coefficients. The organ dose conversion coefficients from the Korean adult phantoms were slightly greater than those of the ICRP reference phantoms: up to 13% for the brain doses in head scans and up to 10% for the dose to the small intestine wall in abdominal scans. We derived Korean representative doses to major organs in head, chest, and AP scans using mean CTDIvol values extracted from the Korean nationwide surveys conducted in 2008 and 2017. The Korean-specific organ dose conversion coefficients should be useful to readily estimate organ absorbed doses for Korean adult male and female patients undergoing CT scans.

Beam Spoiler-dependent Total Body Irradiation Dose Assessment (전신방사선조사 시 선속 스포일러에 따른 선량 분포 및 영향 평가)

  • Lee, Dong-Yeon;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.41 no.2
    • /
    • pp.141-148
    • /
    • 2018
  • This study examined the properties of photons and the dose distribution in a human body via a simulation where the total body irradiation(TBI) is performed on a pediatric anthropomorphic phantom and a child size water phantom. Based on this, we tried to find the optimal photon beam energy and material for beam spoiler. In this study, MCNPX (Ver. 2.5.0), a simulation program based on the Monte Carlo method, was used for the photon beam analysis and TBI simulation. Several different beam spoiler materials (plexiglass, copper, lead, aluminium) were used, and three different electron beam energies were used in the simulated accelerator to produce photon beams (6, 10, and 15 MeV). Moreover, both a water phantom for calculating the depth-dependent dosage and a pediatric anthropomorphic phantom for calculating the organ dosage were used. The homogeneity of photon beam was examined in different depths for the water phantom, which shows the 20%-40% difference for each material. Next, the org an doses on pediatric anthropomorphic phantom were examined, and the results showed that the average dose for each part of the body was skin 17.7 Gy, sexual gland 15.2 Gy, digestion 13.8 Gy, liver 11.8 Gy, kidney 9.2 Gy, lungs 6.2 Gy, and brain 4.6 Gy. Moreover, as for the organ doses according to materials, the highest dose was observed in lead while the lowest was observed in plexiglass. Plexiglass in current use is considered the most suitable material, and a 6 or 10 MV photon energy plan tailored to the patient condition is considered more suitable than a higher energy plan.

Evaluating the Reduction of Spatial Scattering based on Lead-free Radiation Shielding Sheet using MCNPX Simulation (MCNPX 시뮬레이션을 이용한 무납 방사선 차폐 시트 기반의 공간산란 저감화 평가)

  • Yang, Seung u;Park, Geum-byeol;Heo, Ye Ji;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.367-373
    • /
    • 2020
  • Most of the spatial scattered dose caused by the scattered rays generated by the collision between the object and X-rays is relatively easily absorbed by the human body as electromagnetic waves in the low energy region, thereby increasing the degree of radiation exposure. Such spatial scattering dose is also used as an indicator of the degree of radiation exposure of radiation workers and patients, and there is a need for a method to reduce exposure by reducing the spatial scattered dose that occurs indirectly. Therefore, in this study, a lead-free radiation shielding sheet was proposed as a way to reduce the spatial scattering dose, and a Monte Carlo (MC) simulation was performed based on a chest X-ray examination. The absorbed dose was calculated and the measured value and the shielding rate were compared and evaluated.

Bragg-curve simulation of carbon-ion beams for particle-therapy applications: A study with the GEANT4 toolkit

  • Hamad, Morad Kh.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2767-2773
    • /
    • 2021
  • We used the GEANT4 Monte Carlo MC Toolkit to simulate carbon ion beams incident on water, tissue, and bone, taking into account nuclear fragmentation reactions. Upon increasing the energy of the primary beam, the position of the Bragg-Peak transfers to a location deeper inside the phantom. For different materials, the peak is located at a shallower depth along the beam direction and becomes sharper with increasing electron density NZ. Subsequently, the generated depth dose of the Bragg curve is then benchmarked with experimental data from GSI in Germany. The results exhibit a reasonable correlation with GSI experimental data with an accuracy of between 0.02 and 0.08 cm, thus establishing the basis to adopt MC in heavy-ion treatment planning. The Kolmogorov-Smirnov K-S test further ascertained from a statistical point of view that the simulation data matched the experimentally measured data very well. The two-dimensional isodose contours at the entrance were compared to those around the peak position and in the tail region beyond the peak, showing that bone produces more dose, in comparison to both water and tissue, due to secondary doses. In the water, the results show that the maximum energy deposited per fragment is mainly attributed to secondary carbon ions, followed by secondary boron and beryllium. Furthermore, the number of protons produced is the highest, thus making the maximum contribution to the total dose deposition in the tail region. Finally, the associated spectra of neutrons and photons were analyzed. The mean neutron energy value was found to be 16.29 MeV, and 1.03 MeV for the secondary gamma. However, the neutron dose was found to be negligible as compared to the total dose due to their longer range.