• Title/Summary/Keyword: Dose simulation

Search Result 586, Processing Time 0.025 seconds

Quantitative Microbial Risk Assessment of Clostridium perfringens on Ham and Sausage Products in Korea (햄 및 소시지류에서의 Clostridium perfringens에 대한 정량적 미생물 위해평가)

  • Ko, Eun-Kyung;Moon, Jin-San;Wee, Sung-Hwan;Bahk, Gyung-Jin
    • Food Science of Animal Resources
    • /
    • v.32 no.1
    • /
    • pp.118-124
    • /
    • 2012
  • This study was conducted for quantitative microbial risk assessment (QMRA) of Clostridium perfringens with consumption on ham and sausage products in Korea, according to Codex guidelines. Frame-work model as product-retail-consumption pathway composed with initial contamination level, the time and temperature in distributions, and consumption data sets for ham and sausage products and also used the published predictive growth and dose-response models for Cl. perfringens. The simulation model and formulas with Microsoft@ Excel spreadsheet program using these data sets was developed and simulated with @RISK. The probability of foodborne disease by Cl. perfringens with consumption of the ham and sausage products per person per day was estimated as $3.97{\times}10^{-11}{\pm}1.80{\times}10^{-9}$. There were also noted that limitations in this study and suggestion for development of QMRA in the future in Korea.

Application of the Health Risk Models Estimating Skin Cancer Caused by UVB Radiation (자외선(UVB) 노출 증가에 대한 피부암 위해도 예측 모델의 적용)

  • Shin, Dong-Chun;Lee, Jong-Tae;Chung, Yong;Kang, Na-Kyung;Yang, Ji-Yeon
    • Environmental Analysis Health and Toxicology
    • /
    • v.11 no.1_2
    • /
    • pp.1-10
    • /
    • 1996
  • A decrease in stratospheric ozone probably caused by chloroflurocarbons (CFCs) emissions, has been observed large parts of-the globe. It is generally accepted that if ozone levels in the stratosphere are depleted, greater amounts of shortwave ultraviolet radiationB (UVB) will reach the earth's surface, resulting in increased incidence of nonmelanoma skin cancer. In this study, we evaluated several mathematical models, such as a power and an exponential model, and a geometric model considering the surface area of a human body part and ages for the prediction of Skin cancer incidence caused by exposure to the UVB radiation. These models basically estimated the risk of skin cancer based on those measurements of the local ozone in stratosphere and UVB. Both were measured at a part of Seoul with a Dobson ozone spectrometer and Robertson-Berger UV Biometer for 1995. As a result, we calculated the point estimation applying a biological amplification factor (BAF), UVB radiation and other factors. We used a Monte-Carlo simulation technique with assumption on the distribution of each considered factor. The sensitivity analysis of model by there components conducted using Gaussian sensitivity method. The annual integral of UVB radiation was 2275 MED (minimal erythema dose)/yr. Also, an estimate of the annual amount of UVB reaching the earth's surface at a korea's latitude and altitude was 3328 MED/yr. The values of the radiation amplification factor (RAF) were ranged from 0.9 to 1.5 in Seoul. To give the effective factors required to model the prediction of skin cancer incidence caused by exposure to the UVB radiation in Korea, we studied the pros and cons of above mentioned models with the application of those parameters measured in Seoul, Korea.

  • PDF

Development of Monte Carlo Simulation Code for the Dose Calculation of the Stereotactic Radiosurgery (뇌 정위 방사선수술의 선량 계산을 위한 몬테카를로 시뮬레이션 코드 개발)

  • Kang, Jeongku;Lee, Dong Joon
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.303-308
    • /
    • 2012
  • The Geant4 based Monte Carlo code for the application of stereotactic radiosurgery was developed. The probability density function and cumulative density function to determine the incident photon energy were calculated from pre-calculated energy spectrum for the linac by multiplying the weighting factors corresponding to the energy bins. The messenger class to transfer the various MLC fields generated by the planning system was used. The rotation matrix of rotateX and rotateY were used for simulating gantry and table rotation respectively. We construct accelerator world and phantom world in the main world coordinate to rotate accelerator and phantom world independently. We used dicomHandler class object to convert from the dicom binary file to the text file which contains the matrix number, pixel size, pixel's HU, bit size, padding value and high bits order. We reconstruct this class object to work fine. We also reconstruct the PrimaryGeneratorAction class to speed up the calculation time. because of the huge calculation time we discard search process of the ThitsMap and used direct access method from the first to the last element to produce the result files.

SIMULATION OF THE TISSUE EQUIVALENT PROPORTIONAL COUNTER IN THE INTERNATIONAL SPACE STATION WITH GEANT4 (Geant4를 활용한 국제우주정거장 내의 조직등가비례계수기 모의 실험)

  • Pyo, Jeong-Hyun;Lee, Jae-Jin;Nam, Uk-Won;Kim, Sung-Hwan;Kim, Hyun-Ok;Lim, Chang-Hwy;Park, Kwi-Jong;Lee, Dae-Hee;Park, Young-Sik;Moon, Myung-Kook
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.3
    • /
    • pp.81-86
    • /
    • 2012
  • The International Space Station (ISS) orbits the Earth within the inner radiation belt, where high-energy protons are produced by collisions of cosmic rays to the upper atmosphere. About 6 astronauts stay in the ISS for a long period, and it should be important to monitor and assess the radiation environment in the ISS. The tissue equivalent proportional counter (TEPC) is an instrument to measure the impact of radiation on the human tissue. KASI is developing a TEPC as a candidate payload of the ISS. Before the detailed design of the TEPC, we performed simulations to test whether our conceptual design of the TEPC will work propertly in the ISS and to predict its performance. The simulations estimated that the TEPC will measure the dose equivalent of about 1:1 mSv during a day in the ISS, which is consistent with previous measurements.

Dosimetric comparison of axilla and groin radiotherapy techniques for high-risk and locally advanced skin cancer

  • Mattes, Malcolm D.;Zhou, Ying;Berry, Sean L.;Barker, Christopher A.
    • Radiation Oncology Journal
    • /
    • v.34 no.2
    • /
    • pp.145-155
    • /
    • 2016
  • Purpose: Radiation therapy targeting axilla and groin lymph nodes improves regional disease control in locally advanced and high-risk skin cancers. However, trials generally used conventional two-dimensional radiotherapy (2D-RT), contributing towards relatively high rates of side effects from treatment. The goal of this study is to determine if three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or volumetric-modulated arc therapy (VMAT) may improve radiation delivery to the target while avoiding organs at risk in the clinical context of skin cancer regional nodal irradiation. Materials and Methods: Twenty patients with locally advanced/high-risk skin cancers underwent computed tomography simulation. The relevant axilla or groin planning target volumes and organs at risk were delineated using standard definitions. Paired t-tests were used to compare the mean values of several dose-volumetric parameters for each of the 4 techniques. Results: In the axilla, the largest improvement for 3D-CRT compared to 2D-RT was for homogeneity index (13.9 vs. 54.3), at the expense of higher lung $V_{20}$ (28.0% vs. 12.6%). In the groin, the largest improvements for 3D-CRT compared to 2D-RT were for anorectum $D_{max}$ (13.6 vs. 38.9 Gy), bowel $D_{200cc}$ (7.3 vs. 23.1 Gy), femur $D_{50}$ (34.6 vs. 57.2 Gy), and genitalia $D_{max}$ (37.6 vs. 51.1 Gy). IMRT had further improvements compared to 3D-CRT for humerus $D_{mean}$ (16.9 vs. 22.4 Gy), brachial plexus $D_5$ (57.4 vs. 61.3 Gy), bladder $D_5$ (26.8 vs. 36.5 Gy), and femur $D_{50}$ (18.7 vs. 34.6 Gy). Fewer differences were observed between IMRT and VMAT. Conclusion: Compared to 2D-RT and 3D-CRT, IMRT and VMAT had dosimetric advantages in the treatment of nodal regions of skin cancer patients.

Development of Sensitivity-Enhanced Detector using Pixelization of Block Scintillator with 3D Laser Engraving (3차원 레이저 각인으로 블록형 섬광체의 픽셀형화를 통한 민감도 향상 검출기 개발)

  • Lee, Seung-Jae;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.313-318
    • /
    • 2019
  • To improve the sensitivity, a detector using a block scintillator was developed. In the pixelated scintillator, a reflector is located between pixels to move the light generated from the scintillator to the photosensor as much as possible, and sensitivity loss occurs in the reflector portion. In order to improve the sensitivity and to have the characteristics of the pixelated scintillator, the block scintillator was processed into a scintillator in pixel form through three-dimensional laser engraving. The energy spectra and energy resolution of each pixel were measured, and sensitivity analysis of block and pixel scintillator was performed through GATE simulation. The measured global energy resolution was 20.7%, and the sensitivity was 18.5% higher than that of the pixel scintillator. When this detector is applied to imaging devices such as gamma camera and positron emission tomography, it will be possible to shorten the imaging time and reduce the dose of patient by using less radiation source.

Quantitative microbial risk assessment of Vibrio parahaemolyticus foodborne illness of sea squirt (Halocynthia roretzi) in South Korea

  • Kang, Joohyun;Lee, Yewon;Choi, Yukyung;Kim, Sejeong;Ha, Jimyeong;Oh, Hyemin;Kim, Yujin;Seo, Yeongeun;Park, Eunyoung;Rhee, Min Suk;Lee, Heeyoung;Yoon, Yohan
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.2
    • /
    • pp.78-88
    • /
    • 2021
  • The annual consumption of fishery products, particularly sea squirt (Halocynthia roretzi), per person has steadily increased in South Korea. However, the quantitative risk of Vibrio parahaemolyticus following intake of sea squirt has not been analyzed. This study focuses on quantitative predictions of the probability of consuming sea squirt and getting of V. parahaemolyticus foodborne illness. The prevalence of V. parahaemolyticus in sea squirt was evaluated, and the time spent by sea squirt in transportation vehicles, market displays, and home refrigerators, in addition to the temperature of each of these, were recorded. The data were fitted to the @RISK program to obtain a probability distribution. Predictive models were developed to determine the fate of V. parahaemolyticus under distribution conditions. A simulation model was prepared based on experimental data, and a dose-response model for V. parahaemolyticus was prepared using data from literature to estimate infection risk. V. parahaemolyticus contamination was detected in 6 of 35 (17.1%) sea squirt samples. The daily consumption quantity of sea squirt was 62.14 g per person, and the consumption frequency was 0.28%. The average probability of V. parahaemolyticus foodborne illness following sea squirt consumption per person per day was 4.03 × 10-9. The objective of this study was to evaluate the risk of foodborne illness caused by Vibrio parahaemolyticus following sea squirt consumption in South Korea.

Reference dosimetry for inter-laboratory comparison on retrospective dosimetry techniques in realistic field irradiation experiment using 192Ir

  • Choi, Yoomi;Kim, Hyoungtaek;Kim, Min Chae;Yu, Hyungjoon;Lee, Hyunseok;Lee, Jeong Tae;Lee, Hanjin;Kim, Young-su;Kim, Han Sung;Lee, Jungil
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2599-2605
    • /
    • 2022
  • The Korea Retrospective Dosimetry network (KREDOS) performed an inter-laboratory comparison to confirm the harmonization and reliability of the results of retrospective dosimetry using mobile phone. The mobile phones were exposed to 192Ir while attached to the human phantoms in the field experiment, and the exposure doses read by each laboratory were compared. This paper describes the reference dosimetry performed to present the reference values for inter-comparison and to obtain additional information about the dose distribution. Reference dosimetry included both measurement using LiF:Mg,Cu,Si and calculation via MCNP simulation to allow a comparison of doses obtained with the two different methodologies. When irradiating the phones, LiF elements were attached to the phones and phantoms and irradiated at the same time. The comparison results for the front of the phantoms were in good agreement, with an average relative difference of about 10%, while an average of about 16% relative difference occurred for the back and side of the phantom. The differences were attributed to the different characteristics of the physical and simulated phantoms, such as anatomical structure and constituent materials. Nevertheless, there was about 4% of under-estimation compared to measurements in the overall linear fitting, indicating the calculations were well matched to the measurements.

ACA: Automatic search strategy for radioactive source

  • Jianwen Huo;Xulin Hu;Junling Wang;Li Hu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3030-3038
    • /
    • 2023
  • Nowadays, mobile robots have been used to search for uncontrolled radioactive source in indoor environments to avoid radiation exposure for technicians. However, in the indoor environments, especially in the presence of obstacles, how to make the robots with limited sensing capabilities automatically search for the radioactive source remains a major challenge. Also, the source search efficiency of robots needs to be further improved to meet practical scenarios such as limited exploration time. This paper proposes an automatic source search strategy, abbreviated as ACA: the location of source is estimated by a convolutional neural network (CNN), and the path is planned by the A-star algorithm. First, the search area is represented as an occupancy grid map. Then, the radiation dose distribution of the radioactive source in the occupancy grid map is obtained by Monte Carlo (MC) method simulation, and multiple sets of radiation data are collected through the eight neighborhood self-avoiding random walk (ENSAW) algorithm as the radiation data set. Further, the radiation data set is fed into the designed CNN architecture to train the network model in advance. When the searcher enters the search area where the radioactive source exists, the location of source is estimated by the network model and the search path is planned by the A-star algorithm, and this process is iterated continuously until the searcher reaches the location of radioactive source. The experimental results show that the average number of radiometric measurements and the average number of moving steps of the ACA algorithm are only 2.1% and 33.2% of those of the gradient search (GS) algorithm in the indoor environment without obstacles. In the indoor environment shielded by concrete walls, the GS algorithm fails to search for the source, while the ACA algorithm successfully searches for the source with fewer moving steps and sparse radiometric data.

Development and verification of a novel system for computed tomography scanner model construction in Monte Carlo simulations

  • Ying Liu;Ting Meng ;Haowei Zhang ;Qi Su;Hao Yan ;Heqing Lu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4244-4252
    • /
    • 2022
  • The accuracy of Monte Carlo (MC) simulations in estimating the computed tomography radiation dose is highly dependent on the accuracy of CT scanner model. A system was developed to observe the 3D model intuitively and to calculate the X-ray energy spectrum and the bowtie (BT) filter model more accurately in Monte Carlo N-particle (MCNP). Labview's built-in Open Graphics Library (OpenGL) was used to display basic surfaces, and constructive solid geometry (CSG) method was used to realize Boolean operations. The energy spectrum was calculated by simulating the process of electronic shooting and the BT filter model was accurately modeled based on the calculated shape curve. Physical data from a study was used as an example to illustrate the accuracy of the constructed model. RMSE between the simulation and the measurement results were 0.97% and 0.74% for two filters of different shapes. It can be seen from the comparison results that to obtain an accurate CT scanner model, physical measurements should be taken as the standard. The energy spectrum library should be established based on Monte Carlo simulations with modifiable input files. It is necessary to use the three-segment splicing modeling method to construct the bowtie filter model.