• Title/Summary/Keyword: Dose simulation

Search Result 586, Processing Time 0.027 seconds

Characterization of the 2.5 MeV ELV electron accelerator electron source angular distribution using 3-D dose measurement and Monte Carlo simulations

  • Chang M. Kang;Seung-Tae Jung;Seong-Hwan Pyo;Youjung Seo;Won-Gu Kang;Jin-Kyu Kim;Young-Chang Nho;Jong-Seok Park;Jae-Hak Choi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4678-4684
    • /
    • 2023
  • Using the Monte Carlo method, the impact of the angular distribution of the electron source on the dose distribution for the 2.5 MeV ELV electron accelerator was explored. The experiment measured the 3-D dose distribution in the irradiation chamber for electron energies of 1.0 MeV and 2.5 MeV. The simulation used the MCNP6.2 code to evaluate three angular distribution models of the source: a mono-directional beam, a cone shape, and a triangular shape. Of the three models, the triangular shape with angles θ = 30°, φ = 0° best represents the angle of the scan hood through which the electron beam exits. The MCNP6.2 simulation results demonstrated that the triangular model is the most accurate representation of the angular distribution of the electron source for the 2.5 MeV ELV electron accelerator.

A Study on the Simulation and the Measurement of 6 MeV electron Beam (6 MeV 전자선의 측정과 모의계산에 대한 연구)

  • Lee Sung Ah;Lee Jeong Ok;Moon Sun Rock;Won Jong Jin;Kang Jeong Ku;Kim Seung Kon
    • Radiation Oncology Journal
    • /
    • v.13 no.3
    • /
    • pp.285-289
    • /
    • 1995
  • Purpose : We compared the calcualted percent depth dose curves of 6 MeV electron beam to that of measured to evaluate the usefulness of Monte-carlo simulation method in radiation physics. Materials and Methods : The radiation dose values of 6 MeV electron beam using EGS4 code with one million histories in water were compared values that were measured from the depth dose curve of electron beam irradiated by medical accelerator ML6M. The central axis dose values were calculated according to the changing field size. such as $5{\times}5,\;10{\times}10,\;15{\times}15,\;20{\times}20cm^2$. Results : The value calculated showed a very similar shape to depth dose curve. The calculated and measured value of $D_max$ at $10{\times}10cm^2$ cone is 15mm and 14mm respectively. The calculated value of the surface radiation dose rate is $65.52\%$ and measured one is $76.94\%$. The surface radiation dose rate has varied from $64.43\%$ to $66.99\%$. The calculated values of $D_max$ are in the range between 15mm and 18mm. The calculated value was fitted well with measured value around the $D_max$ area, excluding build up range and below the $90\%$ depth dose area. Conclusion : This result suggested that the calculation of dose value can be replace the direct measurement of the dose for radiation therapy. Also, EGS4 may be a very convenient program to assess the effect of radiation dose using by personal computers.

  • PDF

Dose Distribution Study for Quantitative Evaluation when using Radioisotope (99mTc, 18F) Sources (방사성 동위원소 (99mTc, 18F) 선원 사용 시 인체 내부피폭의 정량적 평가를 위한 선량분포 연구)

  • Ji, Young-Sik;Lee, Dong-Yeon;Yang, Hyun-Gyung
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.603-609
    • /
    • 2022
  • The dose distribution in the human body was evaluated and analyzed through dosimetry data using water phantom, ionization chamber and simulated by Monte Carlo simulation for 99mTc and 18F sources, which are frequently used in the nuclear medicine in this study. As a result of this study, it was found that the dose decreased exponentially as the distance from the radioisotope increased, and it particularly showed a tendency to decrease sharply when the radioisotope was separated by 5 cm. It means that a large amount of dose is delivered to an organ located within 4 cm of source's movement path when a source uptake in the human body. Numerically, it was formed in the rage of 0.16 to 2.16 pC/min for 99mTc and 0.49 to 9.29 pC/min for 18F. In addition, the energy transfer coefficient calculated using the result was found to be similar to the measured value and the simulation value in the range of 0.240 to 0.260. Especially, when the measured data and the simulation value were compared, there was a difference is within 2%, so the reliability of the data was secured. In this study, the distribution of radiation generated from a source was calculated to quantitatively evaluate the internal dose by radioisotopes. It presented reliable results through comparative analysis of the measurement value and simulation value. Above all, it has a great significance to the point that it was presented by directly measuring the distribution of radiation in the human body.

Evaluation of absorbed dose in monkey and mouse using 18F-FDG PET and CT density information

  • Kim, Wook;Lee, Yong Jin;Park, Yong Sung;Cho, Doo-Wan;Lee, Hong-Soo;Han, Su-Cheol;Kang, Joo Hyun;Woo, Sang-Keun
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.1
    • /
    • pp.18-24
    • /
    • 2017
  • Patient-specific image-based internal dosimetry involves using the patient's individual anatomy and spatial distribution of radioactivity over time to obtain an absorbed dose calculation. Individual absorbed dose was calculated by accumulated activity multiply S-value of each organs. The aim of this study was to calculate the S-values using Monte Carlo simulation in monkey and mouse and evaluation of absorbed dose in each organ. Self-irradiation S-value of monkey heart self-irradiation was 3.15E-03 mGy-g/MBq-s, lung self-irradiation was 8.94E-04 mGy-g/MBq-s and liver self-irradiation S-value was 2.23E-03 mGy-g/MBq-s. Mouse heart self-irradiation S-value was 1.95E-01 mGy-g/MBq-s, lung was 9.59E-02 mGy-g/MBq-s, and liver was 1.40E-03 mGy-g/MBq-s. The results of this study show that the calculation protocol of image based individual absorbed dose of each organ using Monte Carlo simulation. Therefore, this study may be applied to calculate human specific absorbed dose.

Monte Carlo Simulation for absorbed dose in PMMA phantom during the low-energy X-ray irradiation (저 에너지 X선 조사 시 PMMA 팬텀 내의 흡수선량 평가를 위한 몬테카를로 시뮬레이션)

  • Kim, Sang-Tae;Kang, Sang-Koo;Kim, Chong-Yeal
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.6
    • /
    • pp.383-389
    • /
    • 2011
  • This study offered a new method to calculate absorbed dose of actual patients through Monte Carlo Simulation by using the linkage of Geant4 and DICOM, and, the experimental value of absorbed dose at the center and Geant 4 simulation result according to the depth of PMMA mock phantom were compared by using MOSEF in order to verify Geant4 calculation code. In the area where there was no air space between the irregular gap due to incomplete compression of PMMA slab, the differences were $0.46{\pm}4.69$ percent and $-0.75{\pm}5.19$percent in $15{\times}15cm^2$ and $20{\times}20cm^2$ respectively. Excluding the error due to incomplete compression of PMMA mock phantom, the calculation values of the Monte Carlo simulation by linkage of Geant4 and DICOM was the same.

Si(100)에 이온 주입 시 dose rate에 따른 damage profile과 sheet resistance의 변화

  • Kim, Hyeong-In;Jeong, Yeong-Wan;Gang, Seok-Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.188-188
    • /
    • 2010
  • 동일한 에너지와 일정한 dose량을 유지하고 dose rate만을 변화시켜가며 이온을 Si(100) 표면에 주입하였다. 이러한 조건하에서 이온의 dose rate가 커지게 되면 시료 내에서 relaxation되는 시간이 짧아져서 damage의 양이 증가하게 되고 depth profile의 꼬리부분이 표면 쪽으로 올라오게 된다. 이와 같은 damage profile의 변화가 sheet resistance에 영향을 준다는 실험결과가 있다. 본 연구에서는 Crystal-TRIM computer simulation을 통해서 depth profile과 damage profile의 결과를 얻고, dose rate가 커질수록 시료표면 근방에 잔류 damage의 양이 높게 나타나는 것을 확인할 수 있다. 또한, 잔류 damage의 표면근방에서의 분포가 annealing 이후 sheet resistance를 변화시키는데 이에 대한 mechanism을 규명하고자 한다.

  • PDF

Study of Radiation dose Evaluation using Monte Carlo Simulation while Treating Extrahepatic Bile Duct Cancer with High Dose Rate Intraluminal Brachytherapy (간외 담도암 고선량률 관내근접방사선치료 시 몬테카를로 시뮬레이션을 통한 주변장기의 선량평가 연구)

  • Park, Ju-Kyeong;Lee, Seung-Hoon;Cha, Seok-Yong;Lee, Sun-Young
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.467-474
    • /
    • 2014
  • The relative dose calculated by MCNPX and the relative dose measured by ionization chamber and solid phantoms evaluated the accuracy comparing with Monte Carlo simulation. In order to apply Monte Carlo simulation the intraluminal brachytherapy of extrahepatic bile duct cancer, 192Ir sealed radioactive source replicate, Bile duct and surrounding organs were made using KMIRD phantom based on a South Korea standard man. To check the absorbed dose of normal organs around bile duct, we set the specific effective energy and initial radioactivity to 1 Ci using MCNPX. Evaluation of the accuracy of the Monte Carlo simulation, the difference of the relative dose is the most 1.96% that satisfy the criteria that is the relative error less than 2% suggested by MCNPX code. In addition, The specific effective energy and absorbed dose of normal organs that were relatively adjacent to bile duct such as right side of kidney, liver, pancreas, transverse colon, spinal cord, stomach and small intestine were relatively high. on the contrary, the organs that were relatively distant to bile duct such as left side of kidney, spleen, ascending colon, descending colon and sigmoid colon were relatively low.

Organ Dose Assessment of Nuclear Medicine Practitioners Using L-Block Shielding Device for Handling Diagnostic Radioisotopes (진단용 방사성동위원소 취급 시 L-block 차폐기구 사용에 따른 핵의학 종사자의 장기 선량평가)

  • Kang, Se-Sik;Cho, Yong-In;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • In the case of nuclear medicine practitioners in medical institutions, a wide range of exposure dose to individual workers can be found, depending on the type of source, the amount of radioactivity, and the use of shielding devices in handling radioactive isotopes. In this regard, this study evaluated the organ dose on practitioners as well as the dose reduction effect of the L-block shielding device in handling the diagnostic radiation source through the simulation based on the Monte Carlo method. As a result, the distribution of organ dose was found to be higher as the position of the radiation source was closer to the handling position of a practitioner, and the effective dose distribution was different according to the ICRP tissue weight. Furthermore, the dose reduction effect according to the L-block thickness tended to decrease, which showed the exponential distribution, as the shielding thickness increased. The dose reduction effect according to each radiation source showed a low shielding effect in proportion to the emitted gamma ray energy level.

AN ASSESSMENT OF THE RADIATION DOSE RATE DUE TO AN OCCURRENCE OF THE DEFECT ON THE SPENT NUCLEAR FUEL ROD

  • Lee, Sang-Hun;Moon, Joo-Hyun
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.144-150
    • /
    • 2009
  • This study examines how much the radiation dose rate around it varies if a crack occurs on the spent nuclear fuel rod. The spent nuclear fuel rod to be examined is that of Kori unit 3&4. The source terms are evaluated using the ORIGEN-ARP that is part of the version 5.1 of the SCALE package. The radiation dose rate is assessed using the TORT. To check if the structure of a fuel rod is appropriately modeled in the TORT calculation, the calculation results by the TORT are compared with those by the ANISN for the same case. From the code simulation, it is known that if a crack occurs on the spent nuclear fuel rod, the neutron dose rate varies depending on what material is the crack filled with, but the gamma dose rate varies irrespective of type of the material that the crack is filled with.

The Comparative Analysis of External Dose Reconstruction in EPID and Internal Dose Measurement Using Monte Carlo Simulation (몬테 카를로 전산모사를 통한 EPID의 외부적 선량 재구성과 내부 선량 계측과의 비교 및 분석)

  • Jung, Joo-Young;Yoon, Do-Kun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.253-258
    • /
    • 2013
  • The purpose of this study is to evaluate and analyze the relationship between the external radiation dose reconstruction which is transmitted from the patient who receives radiation treatment through electronic portal imaging device (EPID) and the internal dose derived from the Monte Carlo simulation. As a comparative analysis of the two cases, it is performed to provide a basic indicator for similar studies. The geometric information of the experiment and that of the radiation source were entered into Monte Carlo n-particle (MCNPX) which is the computer simulation tool and to derive the EPID images, a tally card in MCNPX was used for visualizing and the imaging of the dose information. We set to source to surface distance (SSD) 100 cm for internal measurement and EPID. And the water phantom was set to be 100 cm of the source to surface distance (SSD) for the internal measurement and EPID was set to 90 cm of SSD which is 10 cm below. The internal dose was collected from the water phantom by using mesh tally function in MCNPX, accumulated dose data was acquired by four-portal beam exposures. At the same time, after getting the dose which had been passed through water phantom, dose reconstruction was performed using back-projection method. In order to analyze about two cases, we compared the penetrated dose by calibration of itself with the absorbed one. We also evaluated the reconstructed dose using EPID and partially accumulated (overlapped) dose in water phantom by four-portal beam exposures. The sum dose data of two cases were calculated as each 3.4580 MeV/g (absorbed dose in water) and 3.4354 MeV/g (EPID reconstruction). The result of sum dose match from two cases shows good agreement with 0.6536% dose error.