• 제목/요약/키워드: Dose ratio

검색결과 1,336건 처리시간 0.026초

약품 주입비율에 따른 하수 슬러지 형태(소화·비소화)가 건조효율에 미치는 영향 - 근적외선 및 마이크로파를 중심으로 - (Effect on Drying Efficiency of the Sewage Sludge (Digested, non digested) according to Polymer dose Ratio - Focus on the NIR and Microwave -)

  • 이승원
    • 한국환경과학회지
    • /
    • 제30권3호
    • /
    • pp.245-255
    • /
    • 2021
  • In this study, we evaluated the effect of the type of sewage sludge (digested, non digested) on drying efficiency according to the polymer injection rate. The drying characteristics were shown using a near-infrared ray (NIR) and a microwave. As a result of the drying characteristics with NIR at a polymer dose ratio of 8%, the heating up period is up to 6 minutes after the start of the drying experiment. Afterwards, the constant rate drying period of the digested sludge (A, C and G sites) was 6 minute → 18 minute, showing a rapid decrease in moisture. On the other hand, non digested sludge (B, D, E, F, H, I, J and K sites) showed gradual drying characteristics compared to digested sludge until complete drying (10%). As the polymer dose ratio of 10% and 12%, the heating up period for digested sludge is up to 6 minute after the start of the experiment. Afterwards, the constant rate drying period of the digested sludge was 6 minute → 20 minute, showing a rapid decrease in moisture. On the other hand, the heating up period of non digested sludge was up to 10 minute after the start of the experiment, and the constant rate drying period was 10 minute → 22 minute, which was shorter than digested sludge. As a result of the drying characteristics with microwave at a polymer dose ratio of 8%, 10% and 12%, the constant rate drying period the digested sludge was 4 minute → 20~22 minute, showing a rapid decrease in moisture. On the other hand, non digested sludge of the constant rate drying period was 4 minute → 22~30 minute, which was longer than digested sludge.

Average Glandular Dose In Mammography

  • Kim, K.H.;Ryu, Y.C.;Oh, C.H.
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.319-321
    • /
    • 2004
  • The average glandular dose (AGD) is determined by the breast entrance skin exposure, x-ray tube target material, beam quality (half-value layer), breast thickness, and breast composition. Almost breast cancer always arises in glandular breast tissue. As a result, the average radiation absorbed dose to glandular tissue is the preferred measure of the radiation risk associated with mammography. If the normalized average glandular dose is known, the average glandular dose can be computed from the product of the normalized average glandular dose and breast entrance skin exposure. In this study, AGD was calculated by the breast thickness and various x-ray energy (HVL) in 50% glandular 50% adipose breast by Mo.-Rh. assembly. AGD is 84 mrad in compressed 5 cm breast. These results show that as increasing the breast thickness, dose also increases. But as increasing the x-ray tube voltage, dose decreases because of high penetrating ratio through the object. But high tube voltage is reducing the subject contrast. From this result, we have to consider the trade-off between subject contrast of image and dose to the patient and choose proper x-ray energy range.

  • PDF

Radioiodine internal dose coefficients specific for Koreans

  • Tae-Eun Kwon;Yoonsun Chung;Choonsik Lee
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2732-2739
    • /
    • 2024
  • This study developed internal dose coefficients for radioiodine, tailored to the Korean population, by incorporating the Korean biokinetic model along with the Korean S values. The observed differences in dose coefficients for Koreans compared to the International Commission on Radiological Protection (ICRP) reference values noticeably varied depending on physical half-lives of iodine isotopes. For longer-lived isotopes such as I-125 and I-129, significant differences in thyroid dose coefficients were observed, with ratios (Korean/ICRP) from 0.30 to 0.55, indicating that actual doses for Koreans can be considerably lower than those evaluated based on the ICRP data. However, for short-lived iodine isotopes, such as I-131, the thyroid dose coefficients were comparable to the ICRP reference values (ratio = 0.95-0.98). These comparable dose coefficients resulted from the lower thyroidal iodine uptake in the Korean model being almost entirely offset by the higher thyroid self-absorption S values in the Korean phantoms. Additionally, this study delves into the substantial differences in absorbed dose coefficients for non-thyroidal regions and effective dose coefficients, which arose not only from physiological/anatomical variability but also technical differences in phantom design. The use of Korean-specific dose coefficients is advisable particularly in scenarios predicting elevated doses, yielding a more precise and clinically relevant dose assessment.

한국성인 남성을 대상으로 한 방사성옥소의 갑상선 섭취율에 따른 각 장기별 흡수선량 평가 (Assessment of Absorbed Dose of by Organ according to Thyroidal Uptake of Radioactive Iodine for Adult Korean Males)

  • 김정훈;임창선;황주호
    • 한국의학물리학회지:의학물리
    • /
    • 제18권4호
    • /
    • pp.187-193
    • /
    • 2007
  • 한국인의 생리적 특성에 맞는 방사성핵종의 체내 흡수선량 평가를 위한 일환으로 한국 성인 남성 28명을 대상으로 $^{131}|$을 경구투여 후 갑상선섭취율 및 소변 일일배설률을 산정하고 각 장기별 흘수선량을 평가하였다 그 결과, 첫째, 투여 24시간 후 갑상선이 평균 19.70%의 섭취율과 71.12%의 소변 일일배설률을 나타냈다. 둘째 본 연구에서 산출한 갑상선섭취율과 기존 ICRP에서 제시하는 갑상선섭취율 30%에 따른 전신유효선량은 각각 1.464E-08 Sv, 2.189E-08 Sv로 약 1.5배의 차이를 나타났다. 정량적인 방사성 옥소의 흡수선량 평가를 위해서는 기존 ICRP에서 제시하는 자료에 의존하기 보다는 인종별 새로운 측정을 통해 각 핵종별 자료의 확보만이 체내피폭평가시 오류를 최소화 할 수 있다.

  • PDF

Estimation of Noise Level and Edge Preservation for Computed Tomography Images: Comparisons in Iterative Reconstruction

  • Kim, Sihwan;Ahn, Chulkyun;Jeong, Woo Kyoung;Kim, Jong Hyo;Chun, Minsoo
    • 한국의학물리학회지:의학물리
    • /
    • 제32권4호
    • /
    • pp.92-98
    • /
    • 2021
  • Purpose: This study automatically discriminates homogeneous and structure edge regions on computed tomography (CT) images, and it evaluates the noise level and edge preservation ratio (EPR) according to the different types of iterative reconstruction (IR). Methods: The dataset consisted of CT scans of 10 patients reconstructed with filtered back projection (FBP), statistical IR (iDose4), and iterative model-based reconstruction (IMR). Using the 10th and 85th percentiles of the structure coherence feature, homogeneous and structure edge regions were localized. The noise level was estimated using the averages of the standard deviations for five regions of interests (ROIs), and the EPR was calculated as the ratio of standard deviations between homogeneous and structural edge regions on subtraction CT between the FBP and IR. Results: The noise levels were 20.86±1.77 Hounsfield unit (HU), 13.50±1.14 HU, and 7.70±0.46 HU for FBP, iDose4, and IMR, respectively, which indicates that iDose4 and IMR could achieve noise reductions of approximately 35.17% and 62.97%, respectively. The EPR had values of 1.14±0.48 and 1.22±0.51 for iDose4 and IMR, respectively. Conclusions: The iDose4 and IMR algorithms can effectively reduce noise levels while maintaining the anatomical structure. This study suggested automated evaluation measurements of noise levels and EPRs, which are important aspects in CT image quality with patients' cases of FBP, iDose4, and IMR. We expect that the inclusion of other important image quality indices with a greater number of patients' cases will enable the establishment of integrated platforms for monitoring both CT image quality and radiation dose.

Reduction of Radiation Dose to Eye Lens in Cerebral 3D Rotational Angiography Using Head Off-Centering by Table Height Adjustment: A Prospective Study

  • Jae-Chan Ryu;Jong-Tae Yoon;Byung Jun Kim;Mi Hyeon Kim;Eun Ji Moon;Pae Sun Suh;Yun Hwa Roh;Hye Hyeon Moon;Boseong Kwon;Deok Hee Lee;Yunsun Song
    • Korean Journal of Radiology
    • /
    • 제24권7호
    • /
    • pp.681-689
    • /
    • 2023
  • Objective: Three-dimensional rotational angiography (3D-RA) is increasingly used for the evaluation of intracranial aneurysms (IAs); however, radiation exposure to the lens is a concern. We investigated the effect of head off-centering by adjusting table height on the lens dose during 3D-RA and its feasibility in patient examination. Materials and Methods: The effect of head off-centering during 3D-RA on the lens radiation dose at various table heights was investigated using a RANDO head phantom (Alderson Research Labs). We prospectively enrolled 20 patients (58.0 ± 9.4 years) with IAs who were scheduled to undergo bilateral 3D-RA. In all patients' 3D-RA, the lens dose-reduction protocol involving elevation of the examination table was applied to one internal carotid artery, and the conventional protocol was applied to the other. The lens dose was measured using photoluminescent glass dosimeters (GD-352M, AGC Techno Glass Co., LTD), and radiation dose metrics were compared between the two protocols. Image quality was quantitatively analyzed using source images for image noise, signal-to-noise ratio, and contrast-to-noise ratio. Additionally, three reviewers qualitatively assessed the image quality using a five-point Likert scale. Results: The phantom study showed that the lens dose was reduced by an average of 38% per 1 cm increase in table height. In the patient study, the dose-reduction protocol (elevating the table height by an average of 2.3 cm) led to an 83% reduction in the median dose from 4.65 mGy to 0.79 mGy (P < 0.001). There were no significant differences between dose-reduction and conventional protocols in the kerma area product (7.34 vs. 7.40 Gy·cm2, P = 0.892), air kerma (75.7 vs. 75.1 mGy, P = 0.872), and image quality. Conclusion: The lens radiation dose was significantly affected by table height adjustment during 3D-RA. Intentional head off-centering by elevation of the table is a simple and effective way to reduce the lens dose in clinical practice.

6MV X-선과 전산화 단층 촬영상을 이용한 뇌하수체 종양 치료계획 (Three Dimensional Dose Planning Using 6MV X-ray and Multiaxial Computed Tomography for Pituitary Adenoma)

  • 이명자;최태진
    • Radiation Oncology Journal
    • /
    • 제3권1호
    • /
    • pp.59-64
    • /
    • 1985
  • Computation of three dimensional dose distribution using CT image and RT plan was applied to a case of pituitary adenoma. Algorithm was based on two dimensional Tissue Maximun Ratio model extended to the third dimension. The resulting isodose curve of transeverse, coronal and sagittal section was demonstrated. This RT plan allows computation of dose distribution in any arbitarily defined plane in addition to conventional cross sectional view.

  • PDF

선형가속기를 이용한 방사선 수술의 선량분포의 실험적 확인 (Verification of Dose Distribution for Stereotactic Radiosurgery with a Linear Accelerator)

  • 박경란;김계준;추성실;이종영;조철우;이창걸;서창옥;김귀언
    • Radiation Oncology Journal
    • /
    • 제11권2호
    • /
    • pp.421-430
    • /
    • 1993
  • The calculation of dose distribution in multiple arc stereotactic radiotherapy is a three-dimensional problem and, therefore, the three-dimensional dose calculation algorithm is important and the algorithm's accuracy and reliability should be confirmed experimentally. The aim of this study is to verify the dose distribution of stereotactic radiosurgery experimentally and to investigate the effect of the beam quality, the number of arcs of radiation, and the tertiary collimation on the resulting dose distribution. Film dosimetry with phantom measurements was done to get the three-dimensional orthogonal isodose distribution. All experiments were carried out with a 6 MV X-ray, except for the study of the effects of beam energy on dose distribution, which was done for X-ray energies of 6 and 15 MV. The irradiation technique was from 4 to 11 arcs at intervals of from 15 to 45 degrees between each arc with various field sizes with additional circular collimator. The dose distributions of square field with linear accelerator collimator compared with the dose distributions obtained using circular field with tertiary collimator. The parameters used for comparing the results were the shape of the isodose curve, dose fall-offs fom $90\%$ to $50\%$ and from $90\%\;to\;20\%$ isodose line for the steepest and shallowest profile, and $A=\frac{90\%\;isodose\;area}{50\%\;isodose\;area-90\%\;isodose\;area}$(modified from Chierego). This ratio may be considered as being proportional to the sparing of normal tissue around the target volume. The effect of beam energy in 6 and 15 MV X-ray indicated that the shapes of isodose curves were the same. The value of ratio A and the steepest and shallowest dose fall-offs for 6 MV X-ray was minimally better than that for 15 MV X-ray. These data illustrated that an increase in the dimensions of the field from 10 to 28 mm in diameter did not significantly change the isodose distribution. There was no significant difference in dose gradient and the shape of isodose curve regardless of the number of arcs for field sizes of 10, 21, and 32 mm in diameter. The shape of isodose curves was more circular in circular field and square in square field. And the dose gradient for the circular field was slightly better than that for the square field.

  • PDF

CT Based 3-Dimensional Treatment Planning of Intracavitary Brachytherapy for Cancer of the Cervix : Comparison between Dose-Volume Histograms and ICRU Point Doses to the Rectum and Bladder

  • Hashim, Natasha;Jamalludin, Zulaikha;Ung, Ngie Min;Ho, Gwo Fuang;Malik, Rozita Abdul;Ee Phua, Vincent Chee
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권13호
    • /
    • pp.5259-5264
    • /
    • 2014
  • Background: CT based brachytherapy allows 3-dimensional (3D) assessment of organs at risk (OAR) doses with dose volume histograms (DVHs). The purpose of this study was to compare computed tomography (CT) based volumetric calculations and International Commission on Radiation Units and Measurements (ICRU) reference-point estimates of radiation doses to the bladder and rectum in patients with carcinoma of the cervix treated with high-dose-rate (HDR) intracavitary brachytherapy (ICBT). Materials and Methods: Between March 2011 and May 2012, 20 patients were treated with 55 fractions of brachytherapy using tandem and ovoids and underwent post-implant CT scans. The external beam radiotherapy (EBRT) dose was 48.6Gy in 27 fractions. HDR brachytherapy was delivered to a dose of 21 Gy in three fractions. The ICRU bladder and rectum point doses along with 4 additional rectal points were recorded. The maximum dose ($D_{Max}$) to rectum was the highest recorded dose at one of these five points. Using the HDRplus 2.6 brachyhtherapy treatment planning system, the bladder and rectum were retrospectively contoured on the 55 CT datasets. The DVHs for rectum and bladder were calculated and the minimum doses to the highest irradiated 2cc area of rectum and bladder were recorded ($D_{2cc}$) for all individual fractions. The mean $D_{2cc}$ of rectum was compared to the means of ICRU rectal point and rectal $D_{Max}$ using the Student's t-test. The mean $D_{2cc}$ of bladder was compared with the mean ICRU bladder point using the same statistical test. The total dose, combining EBRT and HDR brachytherapy, were biologically normalized to the conventional 2 Gy/fraction using the linear-quadratic model. (${\alpha}/{\beta}$ value of 10 Gy for target, 3 Gy for organs at risk). Results: The total prescribed dose was $77.5Gy{\alpha}/{\beta}10$. The mean dose to the rectum was $4.58{\pm}1.22Gy$ for $D_{2cc}$, $3.76{\pm}0.65Gy$ at $D_{ICRU}$ and $4.75{\pm}1.01Gy$ at $D_{Max}$. The mean rectal $D_{2cc}$ dose differed significantly from the mean dose calculated at the ICRU reference point (p<0.005); the mean difference was 0.82 Gy (0.48-1.19Gy). The mean EQD2 was $68.52{\pm}7.24Gy_{{\alpha}/{\beta}3}$ for $D_{2cc}$, $61.71{\pm}2.77Gy_{{\alpha}/{\beta}3}$ at $D_{ICRU}$ and $69.24{\pm}6.02Gy_{{\alpha}/{\beta}3}$ at $D_{Max}$. The mean ratio of $D_{2cc}$ rectum to $D_{ICRU}$ rectum was 1.25 and the mean ratio of $D_{2cc}$ rectum to $D_{Max}$ rectum was 0.98 for all individual fractions. The mean dose to the bladder was $6.00{\pm}1.90Gy$ for $D_{2cc}$ and $5.10{\pm}2.03Gy$ at $D_{ICRU}$. However, the mean $D_{2cc}$ dose did not differ significantly from the mean dose calculated at the ICRU reference point (p=0.307); the mean difference was 0.90 Gy (0.49-1.25Gy). The mean EQD2 was $81.85{\pm}13.03Gy_{{\alpha}/{\beta}3}$ for $D_{2cc}$ and $74.11{\pm}19.39Gy_{{\alpha}/{\beta}3}$ at $D_{ICRU}$. The mean ratio of $D_{2cc}$ bladder to $D_{ICRU}$ bladder was 1.24. In the majority of applications, the maximum dose point was not the ICRU point. On average, the rectum received 77% and bladder received 92% of the prescribed dose. Conclusions: OARs doses assessed by DVH criteria were higher than ICRU point doses. Our data suggest that the estimated dose to the ICRU bladder point may be a reasonable surrogate for the $D_{2cc}$ and rectal $D_{Max}$ for $D_{2cc}$. However, the dose to the ICRU rectal point does not appear to be a reasonable surrogate for the $D_{2cc}$.

필터보정역투영과 적절한 커널을 이용한 소아 저선량 안면 컴퓨터단층촬영의 시행 가능성 (Feasibility of Pediatric Low-Dose Facial CT Reconstructed with Filtered Back Projection Using Adequate Kernels)

  • 지혜;유선경;이정은;이소미;조현혜;엄준영
    • 대한영상의학회지
    • /
    • 제83권3호
    • /
    • pp.669-679
    • /
    • 2022
  • 목적 필터보정역투영(filtered back projection; 이하 FBP)법과 적절한 커널로 재구성된 소아 저선량 안면 컴퓨터단층촬영(이하 CT)의 시행 가능성을 평가하고자 한다. 대상과 방법 응급실에서 안면 CT를 촬영한 10세 이하 환자의 임상 및 영상 데이터를 후향적으로 검토하였다. 환자들을 두 그룹으로 나누었다: 고정된 80 kVp와 자동관전류변조기법을 사용하는 저선량 CT (low-dose CT, 그룹 A, n = 73), 고정된 120 kVp와 자동관전류변조기법을 사용하는 표준 선량 CT (standard-dose CT, 그룹 B, n = 40). 모든 영상은 FBP로 재구성되었다: 그룹 A는 뼈와 연조직 커널을, 그룹 B는 뼈 커널을 이용하였다. 두 그룹의 영상 잡음, 신호대잡음비(signal-to-noise ratio; 이하 SNR), 그리고 대조대잡음비(contrast-to-noise ratio; 이하 CNR)를 비교하였다. 두 명의 영상의학과 의사가 뼈와 연조직의 영상 품질에 대해 주관적으로 점수화하였다. 용적 CT 선량지수(CT dose index volume)와 선량길이곱(dose length product)을 기록하였다. 결과 영상 잡음은 그룹 A가 그룹 B보다 높았다(p < 0.001). 연조직 커널을 사용한 그룹 A 영상에서 가장 높은 SNR과 CNR을 보였다(p < 0.001). 뼈의 정성적 평가에서 뼈 커널 영상들을 비교하면 그룹 A가 그룹 B보다 비슷하거나 높은 점수를 보였다. 연조직의 정성적 평가에서 연조직 커널을 이용한 그룹 A와 뼈 커널에 연조직 창 설정을 이용한 그룹 B 사이에는 통계적으로 유의한 차이가 없었다(p > 0.05). 그룹 A는 그룹 B에 비해 방사선 선량이 76.9% 감소했다(3.2 ± 0.2 mGy vs. 13.9 ± 1.5 mGy, p < 0.001). 결론 연조직 커널 영상을 FBP로 재구성된 전통적인 CT에 추가함으로써 영상 품질을 유지하면서 소아 저선량 안면 CT 프로토콜을 사용할 수 있다.