• 제목/요약/키워드: Dose coefficients

검색결과 149건 처리시간 0.025초

Organ dose conversion coefficients in CT scans for Korean adult males and females

  • Lee, Choonsik;Won, Tristan;Yeom, Yeon Soo;Griffin, Keith;Lee, Choonik;Kim, Kwang Pyo
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.681-688
    • /
    • 2022
  • Dose monitoring in CT patients requires accurate dose estimation but most of the CT dose calculation tools are based on Caucasian computational phantoms. We established a library of organ dose conversion coefficients for Korean adults by using four Korean adult male and two female voxel phantoms combined with Monte Carlo simulation techniques. We calculated organ dose conversion coefficients for head, chest, abdomen and pelvis, and chest-abdomen-pelvis scans, and compared the results with the existing data calculated from Caucasian phantoms. We derived representative organ doses for Korean adults using Korean CT dose surveys combined with the dose conversion coefficients. The organ dose conversion coefficients from the Korean adult phantoms were slightly greater than those of the ICRP reference phantoms: up to 13% for the brain doses in head scans and up to 10% for the dose to the small intestine wall in abdominal scans. We derived Korean representative doses to major organs in head, chest, and AP scans using mean CTDIvol values extracted from the Korean nationwide surveys conducted in 2008 and 2017. The Korean-specific organ dose conversion coefficients should be useful to readily estimate organ absorbed doses for Korean adult male and female patients undergoing CT scans.

Radiation Dose from Computed Tomography Scans for Korean Pediatric and Adult Patients

  • Won, Tristan;Lee, Ae-Kyoung;Choi, Hyung-do;Lee, Choonsik
    • Journal of Radiation Protection and Research
    • /
    • 제46권3호
    • /
    • pp.98-105
    • /
    • 2021
  • Background: In recent events of the coronavirus disease 2019 (COVID-19) pandemic, computed tomography (CT) scans are being globally used as a complement to the reverse-transcription polymerase chain reaction (RT-PCR) tests. It will be important to be aware of major organ dose levels, which are more relevant quantity to derive potential long-term adverse effect, for Korean pediatric and adult patients undergoing CT for COVID-19. Materials and Methods: We calculated organ dose conversion coefficients for Korean pediatric and adult CT patients directly from Korean pediatric and adult computational phantoms combined with Monte Carlo radiation transport techniques. We then estimated major organ doses delivered to the Korean child and adult patients undergoing CT for COVID-19 combining the dose conversion coefficients and the international survey data. We also compared our Korean dose conversion coefficients with those from Caucasian reference pediatric and adult phantoms. Results and Discussion: Based on the dose conversion coefficients we established in this study and the international survey data of COVID-19-related CT scans, we found that Korean 7-year-old child and adult males may receive about 4-32 mGy and 3-21 mGy of lung dose, respectively. We learned that the lung dose conversion coefficient for the Korean child phantom was up to 1.5-fold greater than that for the Korean adult phantom. We also found no substantial difference in dose conversion coefficients between Korean and Caucasian phantoms. Conclusion: We estimated radiation dose delivered to the Korean child and adult phantoms undergoing COVID-19-related CT examinations. The dose conversion coefficients derived for different CT scan types can be also used universally for other dosimetry studies concerning Korean CT scans. We also confirmed that the Caucasian-based CT organ dose calculation tools may be used for the Korean population with reasonable accuracy.

The System of Radiation Dose Assessment and Dose Conversion Coefficients in the ICRP and FGR

  • Kim, Sora;Min, Byung-Il;Park, Kihyun;Yang, Byung-Mo;Suh, Kyung-Suk
    • Journal of Radiation Protection and Research
    • /
    • 제41권4호
    • /
    • pp.424-435
    • /
    • 2016
  • Background: The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. Materials and Methods: The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. Results and Discussion: A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. Conclusion: The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment.

Bias-corrected Hp(10)-to-Organ-Absorbed Dose Conversion Coefficients for the Epidemiological Study of Korean Radiation Workers

  • Jeong, Areum;Kwon, Tae-Eun;Lee, Wonho;Park, Sunhoo
    • Journal of Radiation Protection and Research
    • /
    • 제47권3호
    • /
    • pp.158-166
    • /
    • 2022
  • Background: The effects of radiation on the health of radiation workers who are constantly susceptible to occupational exposure must be assessed based on an accurate and reliable reconstruction of organ-absorbed doses that can be calculated using personal dosimeter readings measured as Hp(10) and dose conversion coefficients. However, the data used in the dose reconstruction contain significant biases arising from the lack of reality and could result in an inaccurate measure of organ-absorbed doses. Therefore, this study quantified the biases involved in organ dose reconstruction and calculated the bias-corrected Hp(10)-to-organ-absorbed dose coefficients for the use in epidemiological studies of Korean radiation workers. Materials and Methods: Two major biases were considered: (a) the bias in Hp(10) arising from the difference between the dosimeter calibration geometry and the actual exposure geometry, and (b) the bias in air kerma-to-Hp(10) conversion coefficients resulting from geometric differences between the human body and slab phantom. The biases were quantified by implementing personal dosimeters on the slab and human phantoms coupled with a Monte Carlo method and considered to calculate the bias-corrected Hp(10)-to-organ-absorbed dose conversion coefficients. Results and Discussion: The bias in Hp(10) was significant for large incident angles and low energies (e.g., 0.32 for right lateral at 218 keV), whereas the bias in dose coefficients was significant for the posteroanterior (PA) geometry only (e.g., 0.79 at 218 keV). The bias-corrected Hp(10)-to-organ-absorbed dose conversion coefficients derived in this study were up to 3.09- fold greater than those from the International Commission on Radiological Protection publications without considering the biases. Conclusion: The obtained results will aid future studies in assessing the health effects of occupational exposure of Korean radiation workers. The bias-corrected dose coefficients of this study can be used to calculate organ doses for Korean radiation workers based on personal dose records.

ABSORBED INTERNAL DOSE CONVERSION COEFFICIENTS FOR DOMESTIC REFERENCE ANIMALS AND PLANT

  • Keum, Dong-Kwon;Jun, In;Lim, Kwang-Muk;Choi, Yong-Ho
    • Nuclear Engineering and Technology
    • /
    • 제42권1호
    • /
    • pp.89-96
    • /
    • 2010
  • This paper describes the methodology of calculating the internal dose conversion coefficient in order to assess the radiological impact on non-human species. This paper also presents the internal dose conversion coefficients of 25 radionuclides ($^3H,\;^7Be,\;^{14}C,\;^{40}K,\;^{51}Cr,\;^{54}Mn,\;^{59}Fe,\;^{58}Co,\;^{60}Co,\;^{65}Zn,\;^{90}Sr,\;^{95}Nb,\;^{99}Tc,\;^{106}Ru,\;^{129}I,\;^{131}I,\;^{136}Cs,\;^{137}Cs,\;^{140}Ba,\;^{140}La,\;^{144}Ce,\;^{238}U,\;^{239}Pu,\;^{240}Pu$) for domestic seven reference animals (roe deer, rat, frog, snake, Chinese minnow, bee, and earthworm) and one reference plant (pine tree). The uniform isotropic model was applied in order to calculate the internal dose conversion coefficients. The calculated internal dose conversion coefficient (${\mu}Gyd^{-1}$ per $Bqkg^{-1}$) ranged from $10^{-6}$ to $10^{-2}$ according to the type of radionuclides and organisms studied. It turns out that the internal does conversion coefficient was higher for alpha radionuclides, such as $^{238}U,\;^{239}Pu$, and $^{240}Pu$, and for large organisms, such as roe deer and pine tree. The internal dose conversion coefficients of $^{239}U,\;^{240}Pu,\;^{238}U,\;^{14}C,\;^3H$, and $^{99}Tc$ were independent of the organism.

발암물질의 발암용량과 최대내성용량의 상관관계 (Correlation Between Tumorigenic Doses and the Maximum Tolerated Dose of Carcinogens)

  • 이병무;김근종
    • 한국환경성돌연변이발암원학회지
    • /
    • 제19권2호
    • /
    • pp.108-111
    • /
    • 1999
  • Correlation between the tumorigenic dose (TD) and the maximum tolerated dose (MTD) was examined to search for the most relevant TD values related to the MTD. Using benzo(a)pyrene (B(a)P) 2-yr bioassay data, correlation coefficients between values of $TD_{1-}$50/ and the MTD were estimated from linearized or non-linearlized dose-response curves. The highest correlation coefficients (0.9966-1.0000) were obtained from T $D_{1-}$10/ in linearized dose-response curves while the highest (0.9966-1.0000) were estimated from $TD _{5-}$10/ in non-linearized dose-response eurves. These data suggest that TDs-lo were more closely related to the MTD than the ,$TD_{5-}$10/ in B(a)P 2-yr bioassay and that in lieu of the $TD_{50}$ they could be efficiently applicable to risk assessment and management.ent.

  • PDF

Dose coefficients of mesh-type ICRP reference computational phantoms for idealized external exposures of photons and electrons

  • Yeom, Yeon Soo;Choi, Chansoo;Han, Haegin;Lee, Hanjin;Shin, Bangho;Nguyen, Thang Tat;Han, Min Cheol;Lee, Choonsik;Kim, Chan Hyeong
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.843-852
    • /
    • 2019
  • In the present study, we established a comprehensive dataset of dose coefficients (DCs) of the new meshtype ICRP reference computational phantoms (MRCPs) for idealized external exposures of photons and electrons with the Geant4 code. Subsequently, the DCs for the nine organs/tissues, calculated for their thin radiosensitive target regions, were compared with the values calculated by averaging the absorbed doses over the entire organ/tissue regions to observe the influence of the thin sensitive regions on dose calculations. The result showed that the influences for both photons and electrons were generally insignificant for the majority of organs/tissues, but very large for the skin and eye lens, especially for electrons. Furthermore, the large influence for the skin eventually affected the effective dose calculations for electrons. The DCs of the MRCPs also were compared with the current ICRP-116 values produced with the current ICRP-110 reference phantoms. The result showed that the DCs for the majority of organs/ tissues and effective dose were generally similar to the ICRP-116 values for photons, except for very low energies; however, for electrons, significant differences from the ICRP-116 values were found in the DCs, particularly for superficial organs/tissues and skeletal tissues, and also for effective dose.

New skeletal dose coefficients of the ICRP-110 reference phantoms for idealized external fields to photons and neutrons using dose response functions (DRFs)

  • Bangho Shin;Yumi Lee;Ji Won Choi;Soo Min Lee;Hyun Joon Choi;Yeon Soo Yeom
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.1949-1958
    • /
    • 2023
  • The International Commission on Radiological Protection (ICRP) Publication 116 was released to provide a comprehensive dataset of the dose coefficients (DCs) for external exposures produced with the adult reference voxel phantoms of ICRP Publication 110. Although an advanced skeletal dosimetry method for photons and neutrons using fluence-to-dose response functions (DRFs) was introduced in ICRP Publication 116, the ICRP-116 skeletal DCs were calculated by using the simple method conventionally used (i.e., doses to red bone marrow and endosteum approximated by doses to spongiosa and/or medullary cavities). In the present study, the photon and neutron DRFs were used to produce skeletal DCs of the ICRP-110 reference phantoms, which were then compared with the ICRP-116 DCs. For photons, there were significant differences by up to ~2.8 times especially at energies <0.3 MeV. For neutrons, the differences were generally small over the entire energy region (mostly <20%). The general impact of the DRF-based skeletal DCs on the effective dose calculations was negligibly small, supporting the validity of the ICRP-116 effective DCs despite their skeletal DCs derived from the simple method. Meanwhile, we believe that the DRF-based skeletal DCs could be beneficial in better estimates of skeletal doses of individuals for risk assessments.

MIRD 인형팬텀의 넓고 평행한 감마선빔에 대한 선량 환산계수 계산 (Calculation of Dose Conversion Coefficients in the Anthropomorphic MIRD Phantom in Broad Unidirectional Beams of Monoenergetic Photons)

  • 장재권;이재기
    • Journal of Radiation Protection and Research
    • /
    • 제22권1호
    • /
    • pp.47-58
    • /
    • 1997
  • MCNP4A 코드를 이용하여 MIRD 인형팬텀의 정면과 후방에서 입사하는 넓고 평행한 감마선빔에 대한 단위 공기커마당 유효선량 환산계수와 단위 플르언스당 장기의 등가선량을 계산하였다. 본 연구에서 고려한 감마선은 0.03-10 MeV 에너지 구간에서 20개의 단일에너지에 대해 수행되었다. 환산계수의 계산결과를 ICRP/ICRU의 연구결과 발표예정 출판물에 주어진 해당되는 값과 비교한 결과 편차 10%이내에서 일치하고 있다. 결과의 차이가 발생한 이유는 MIRD 팬텀과 ADAM/EVE 팬텀의 기하학적 차이가 주원인이며 또한 계산에 사용된 전산코드와 단면적 차이 등으로 판단된다. 특정 식도 모델을 사용한 결과로부터 얻어진 유효선량과 흉선과 췌장에 대한 등가선량을 채택함으로써 얻어지는 유효선량은 약간(최고 5%)의 차이를 보인다. 기타장기로부터 상부대장을 제외했을 때 본 연구에서 다루었던 감마선 선량학적 측면의 경우에서는 중요하지 않은 것으로 나타났다.

  • PDF

몬테칼로 시뮬레이션에 의한 지표면 오염 방사선장에서의 유효선량 평가 (Assessment of Effective Doses in the Radiation Field of Contaminated Ground Surface by Monte Carlo Simulation)

  • 장재권;이재기;장시영
    • Journal of Radiation Protection and Research
    • /
    • 제24권4호
    • /
    • pp.205-213
    • /
    • 1999
  • 지표에 오염된 방사성핵종의 단위방사능당 유효선량환산계수를 남성과 여성 인형모의피폭체와 MCNP4A 코드를 이용하여 계산하였다. 모사실험은 40 keV에서 10 MeV 영역의 19개 단일 에너지에 대한 유효선량 계산을 수행하였다. 에너지에 따른 단위 선원강도에 대한 유효선량 E를 기존 연구자들의 결과물인 유효선량당량 $H_E$와 비교한 결과, 본 연구의 E값이 USEPA의 FGR에 주어진 $H_E$ 값에 비해 30%의 편차를 보였다. 에너지와 유효선량의 관계를 polynomial fitting을 통해 구한 유효선량 감응함수는 다음과 같다. $f({\varepsilon})[fSv\;m^2]=\;0.0634\;+\;0.727{\varepsilon}-0.0520{\varepsilon}^2+0.00247{\varepsilon}^3$ 여기서, ${\varepsilon}$는 감마선의 에너지(MeV)이다. 감응함수와 ICRP 38의 방사성핵종 붕괴 자료를 이용하여 지표면과 공기 오염의 단위 방사능농도에 대한 유효선량환산계수를 계산한 후 DOSEFACTOR코드를 사용하여 계산한 베타선에 의한 피부선량을 합하여 90개의 중요 핵종들에 대한 환산계수를 평가하여 도표로 제시하였다. 기존 자료들과 비교를 통해 기존 환산계수를 사용할 경우 특히 저에너지 감마선이나 고에너지 베타선을 방출하는 핵종에 대해서 상당한 과소평가가 이루어질 수 있음을 확인할 수 있었다.

  • PDF