• Title/Summary/Keyword: Dose Rate

Search Result 3,201, Processing Time 0.031 seconds

Electron Dose Measurement with Polycarbonate Film Dosimeter

  • Yoo, Young-Soo
    • Nuclear Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.9-17
    • /
    • 1976
  • Dosimetrical properties of polycarbonate film for high-level dosimetry of electrons have been examined. Polycartonate film of 0.1mm in thickness was chosen for this purpose. It can cover the dose range of 1.0-130 Mrad and the measurable range can be extended up to 200 Mrad by using calibration curve. The measurement error was within 3.5%. The radiation induced optical density at 330nm shows rapid initial fading of 7-l3n for one day after irradiation at room temperature and subsequent fading rate is very small, about 0.6% per day. The fading depends on the absorbed dose, storage temperature, and wavelengths. The effects of storage time and temperature during and after irradiation of this film are presented. For practical dosimetry, it is necessary to stabilize the induced optical density by storing the irradiated film for a day or by heat treatment at 10$0^{\circ}C$ for an hour.

  • PDF

AN INVESTIGATION INTO RADIATION LEVELS ASSOCIATED WITH DISMANTLING THE KOREA RESEARCH REACTOR

  • Choi, Geun-Sik;Kim, Hee-Reyoung;Han, Moon-Hee
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.468-473
    • /
    • 2010
  • We confirmed that the dismantling of two research reactors with thermal power of $2MW_{th}$ and $100kW_{th}$, respectively, reveals no significant difference between the radiation levels of the research reactor site and the surrounding environment far away from it, from the radiation level aspect. Radiation dose and radioactivity were measured at monitoring points around the research reactor site of the Korea Atomic Energy Research Institute (KAERI) in Seoul and comparison points 0.5 km to 3.3 km from the site. To grasp trends in the radiation levels during dismantling from the end of 2002 to the end of 2007, the gamma radiation dose rate, the accumulated dose, and the radioactivity of the strontium, tritium, and gamma isotopes were statistically treated and estimated. The averages of these items between the two groups, the research reactor site and comparison points, were assessed by applying a T-test with a significance level of 0.05. P-values found by using the T-test were from 0.12 to 0.83 where the values were much higher than the significance level. As a result, no difference was observed between the radiation levels at the research reactor site and at the comparison points by this T-test. This study showed that dismantling activity of the Korea Research Reactor of the Seoul site did not expose the public or the environment to harmful levels of radiation.

Effects of the addition of low-dose ketamine to propofol anesthesia in the dental procedure for intellectually disabled patients

  • Hirayama, Akira;Fukuda, Ken-ichi;Koukita, Yoshihiko;Ichinohe, Tatsuya
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.19 no.3
    • /
    • pp.151-158
    • /
    • 2019
  • Background: This study aimed to examine whether the combination of low-dose ketamine and propofol in deep sedation is clinically useful in controlling the behavior in intellectually disabled patients who are typically extremely noncooperative during dental procedures. Methods: A total of 107 extremely noncooperative intellectually disabled adult patients were analyzed. In all patients, deep sedation was performed using either propofol alone (group P) or using a combination of propofol and 0.2 mg/kg or 0.4 mg/kg ketamine (groups PK0.2 and PK0.4, respectively). The procedures were performed in the order of insertion of nasal cannula into the nostril, attachment of mouth gag, and mouth cleaning and scaling. The frequency of patient movement during the procedures, mean arterial pressure, heart rate, peripheral oxygen saturation, recovery time, discharge time, and postoperative nausea and vomiting were examined. Results: The three groups were significantly different only in the frequency of patient movement upon stimulation during single intravenous injection of propofol and scaling. Conclusion: For propofol deep sedation, in contrast to intravenous injection of propofol alone, prior intravenous injection of low-dose ketamine (0.4 mg/kg) is clinically useful because it neither affects recovery, nor causes side effects and can suppress patient movement and vascular pain during procedures.

DL-RRT* algorithm for least dose path Re-planning in dynamic radioactive environments

  • Chao, Nan;Liu, Yong-kuo;Xia, Hong;Peng, Min-jun;Ayodeji, Abiodun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.825-836
    • /
    • 2019
  • One of the most challenging safety precautions for workers in dynamic, radioactive environments is avoiding radiation sources and sustaining low exposure. This paper presents a sampling-based algorithm, DL-RRT*, for minimum dose walk-path re-planning in radioactive environments, expedient for occupational workers in nuclear facilities to avoid unnecessary radiation exposure. The method combines the principle of random tree star ($RRT^*$) and $D^*$ Lite, and uses the expansion strength of grid search strategy from $D^*$ Lite to quickly find a high-quality initial path to accelerate convergence rate in $RRT^*$. The algorithm inherits probabilistic completeness and asymptotic optimality from $RRT^*$ to refine the existing paths continually by sampling the search-graph obtained from the grid search process. It can not only be applied to continuous cost spaces, but also make full use of the last planning information to avoid global re-planning, so as to improve the efficiency of path planning in frequently changing environments. The effectiveness and superiority of the proposed method was verified by simulating radiation field under varying obstacles and radioactive environments, and the results were compared with $RRT^*$ algorithm output.

Brachytherapy: A Comprehensive Review

  • Lim, Young Kyung;Kim, Dohyeon
    • Progress in Medical Physics
    • /
    • v.32 no.2
    • /
    • pp.25-39
    • /
    • 2021
  • Brachytherapy, along with external beam radiation therapy (EBRT), is an essential and effective radiation treatment process. In brachytherapy, in contrast to EBRT, the radiation source is radioisotopes. Because these isotopes can be positioned inside or near the tumor, it is possible to protect other organs around the tumor while delivering an extremely high-dose of treatment to the tumor. Brachytherapy has a long history of more than 100 years. In the early 1900s, the radioisotopes used for brachytherapy were only radium or radon isotopes extracted from nature. Over time, however, various radioisotopes have been artificially produced. As radioisotopes have high radioactivity and miniature size, the application of brachytherapy has expanded to high-dose-rate brachytherapy. Recently, advanced treatment techniques used in EBRT, such as image guidance and intensity modulation techniques, have been applied to brachytherapy. Three-dimensional images, such as ultrasound, computed tomography, magnetic resonance imaging, and positron emission tomography are used for accurate delineation of treatment targets and normal organs. Intensity-modulated brachytherapy is anticipated to be performed in the near future, and it is anticipated that the treatment outcomes of applicable cancers will be greatly improved by this treatment's excellent dose delivery characteristics.

Photodynamic Diagnosis and Therapy for Peritoneal Carcinomatosis from Gastrointestinal Cancers: Status, Opportunities, and Challenges

  • Kim, Hyoung-Il;Wilson, Brian C.
    • Journal of Gastric Cancer
    • /
    • v.20 no.4
    • /
    • pp.355-375
    • /
    • 2020
  • Selective accumulation of a photosensitizer and the subsequent response in only the light-irradiated target are advantages of photodynamic diagnosis and therapy. The limited depth of the therapeutic effect is a positive characteristic when treating surface malignancies, such as peritoneal carcinomatosis. For photodynamic diagnosis (PDD), adjunctive use of aminolevulinic acid- protoporphyrin IX-guided fluorescence imaging detects cancer nodules, which would have been missed during assessment using white light visualization only. Furthermore, since few side effects have been reported, this has the potential to become a vital component of diagnostic laparoscopy. A variety of photosensitizers have been examined for photodynamic therapy (PDT), and treatment protocols are heterogeneous in terms of photosensitizer type and dose, photosensitizer-light time interval, and light source wavelength, dose, and dose rate. Although several studies have suggested that PDT has favorable effects in peritoneal carcinomatosis, clinical trials in more homogenous patient groups are required to identify the true benefits. In addition, major complications, such as bowel perforation and capillary leak syndrome, need to be reduced. In the long term, PDD and PDT are likely to be successful therapeutic options for patients with peritoneal carcinomatosis, with several options to optimize the photosensitizer and light delivery parameters to improve safety and efficacy.

Radiological Safety Assessment for a Near-Surface Disposal Facility Using RESRAD-ONSITE Code

  • Jang, Jiseon;Kim, Tae-Man;Cho, Chun-Hyung;Lee, Dae Sung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.123-132
    • /
    • 2021
  • Radiological impact analyses were carried out for a near-surface radioactive waste repository at Gyeongju in South Korea. The RESRAD-ONSITE code was applied for the estimation of maximum exposure doses by considering various exposure pathways based on a land area of 2,500 ㎡ with a 0.15 m thick contamination zone. Typical influencing input parameters such as shield depth, shield materials' density, and shield erosion rate were examined for a sensitivity analysis. Then both residential farmer and industrial worker scenarios were used for the estimation of maximum exposure doses depending on exposure duration. The radiation dose evaluation results showed that 60Co, 137Cs, and 63Ni were major contributors to the total exposure dose compared with other radionuclides. Furthermore, the total exposure dose from ingestion (plant, meat, and milk) of the contaminated plants was more significant than those assessed for inhalation, with maximum values of 5.5×10-4 mSv·yr-1 for the plant ingestion. Thus the results of this study can be applied for determining near-surface radioactive waste repository conditions and providing quantitative analysis methods using RESRAD-ONSITE code for the safety assessment of disposing radioactive materials including decommissioning wastes to protect human health and the environment.

Measurement of the applicability of various experimental materials in a medically relevant reactor neutron source Part One: Material characteristics acting as a carrier for boron compounds during neutron irradiation

  • Ezddin Hutli ;Peter Zagyvai
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2984-2996
    • /
    • 2023
  • A 100 kW thermal power pool-type light water reactor and Pu(Be) as a fast neutron source were used to determine the appropriate carrier for irradiating boron-containing samples with neutron beams. The tested materials (carriers) were subjected to neutron beams in the reactor's tangential channel. The geometrical arrangement of experimental facilities relative to the neutron beam trajectory, as well as the effect of sample thickness on the count rate, were investigated. The majority of the detectable charged particles emitted by the neutron beam's interaction with tested materials and the detector's detecting layer are protons (recoiled hydrogen) and particles generated in nuclear reactions (protons and alpha particles), respectively. Stopping and Range of Ions in Matter (SRIM) software was used to do theoretical calculations for the range of expected released particles in various materials, including human tissue. The results of measurement and calculation are in good agreement. According to experiments and theoretical calculations, the number of protons emitted by tissue-like materials may commit a dose comparable to that of boron capture reactions. Furthermore, the range of protons is significantly larger than that of alpha particles, which most probably changes dose distribution in healthy cells surrounding the tumor, which is undesirable in the BNCT approach.

Assessment of occupational radiation exposure of NORM scales residues from oil and gas production

  • EL Hadji Mamadou Fall;Abderrazak Nechaf;Modou Niang;Nadia Rabia;Fatou Ndoye;Ndeye Arame Boye Faye
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1757-1762
    • /
    • 2023
  • Radiological hazards from external exposure of naturally occurring radioactive materials (NORM) scales residues, generated during the extraction process of oil and gas production in southern Algeria, are evaluated. The activity concentrations of 226Ra, 232Th, and 40K were measured using high-purity gamma-ray spectrometry (GeHP). Mean activity concentration of 226Ra, 232Th and 40K, found in scale samples are 4082 ± 41, 1060 ± 38 and 568 ± 36 Bq kg-1, respectively. Radiological hazard parameters, such as radium equivalent (Raeq), external and internal hazard indices (Hex, Hin), and gamma index (Iγ) are also evaluated. All hazard parameter values were greater than the permissible and recommended limits and the average annual effective dose value exceeded the dose constraint (0.3 mSv y-1). However, for occasionally exposed workers, the dose rate of 0.65 ± 0.02 mSv y-1 is lower than recommended limit of 1 mSv y-1 for public.

Unveiling the direct conversion X-ray sensing potential of Brucinium benzilate and N-acetylglcyine

  • T. Prakash;C. Karnan;N. Kanagathara;R.R. Karthieka;B.S. Ajith Kumar;M. Prabhaharan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2190-2194
    • /
    • 2024
  • The study investigates the dose-dependent direct X-ray sensing characteristics of Brucinium benzilate (BB) and N-acetylglycine (NAG) organic crystals. BB and NAG were prepared as a slurry and deposited as a thick film on a patterned metal electrode. The X-ray induced photocurrent response was examined for various exposure doses using an intraoral pulsed 70 keV X-ray machine connected to a source meter. Subsequently, the morphological properties and thickness of the thick films were analyzed using scanning electron microscopy (SEM). At a photon energy of 70 keV, the attenuation coefficient values for NAG and BB crystals were determined to be approximately 0.181 and 0.178 cm2/g, respectively. The X-ray stopping power of the crystals was measured using a suniray-2 X-ray imaging system. To evaluate the responsiveness of the sensors, the photocurrent sensitivity and noise equivalent dose rate (NED) were calculated for both thick films. The findings demonstrated a noteworthy capability of sensing low doses (mGy), thereby suggesting the potential application of these organic materials in X-ray sensor development.