• Title/Summary/Keyword: Dose Coefficient

Search Result 270, Processing Time 0.025 seconds

The Effect of Volume Reduction on Computed Treatment Planning during Head and Neck IMRT and VMAT (두경부 IMRT 및 VMAT 시 체적 감소가 전산화치료계획에 미치는 영향)

  • Ki-Cheon Um;Gha-Jung Kim;Geum-Mun Back
    • Journal of radiological science and technology
    • /
    • v.46 no.3
    • /
    • pp.239-246
    • /
    • 2023
  • In this study, we assessed the effect of reduction of tumor volume in the head and neck cancer by using RANDO phantom in Static Intensity-Modulated Radiation Therapy (S-IMRT) and Volumetric-Modulated Arc Therapy (VMAT) planning. RANDO phantom's body and protruding volumes were delineated by using Contour menu of Eclipse™ (Varian Medical System, Inc., Version 15.6, USA) treatment planning system. Inner margins of 2 mm to 10 mm from protruding volumes of the reference were applied to generate the parameters of reduced volume. In addition, target volume and Organ at Risk (OAR) volumes were delineated. S-IMRT plan and VMAT plan were designed in reference. These plans were assigned in the reduced volumes and dose was calculated in reduced volumes using preset Monitor unit (MU). Dose Volume Histogram (DVH) was generated to evaluate treatment planning. Conformity Index (CI) and R2 in reference S-IMRT were 0.983 and 0.015, respectively. There was no significant relationship between CI and the reduced volume. Homogeneity Index (HI) and R2 were 0.092 and 0.960, respectively. The HI increased when volume reduced. In reference VMAT, CI and R2 were 0.992 and 0.259, respectively. There was no relationship between the volume reduction and CI. On the other hand, HI and R2 were 0.078 and 0.895, respectively. The value of HI increased when the volume reduced. There was significant difference (p<0.05) between parameters (Dmean and Dmax) of normal organs of S-IMRT and VMAT except brain stem. Volume reduction affected the CI, HI and OAR dose. In the future, additional studies are necessary to incorporate the reduction of the volume in the clinical setting.

Evaluation of RPL Glass Dosimeter Characteristics and Uncertainty Evaluation of Reading Correction Factors (유리선량계 특성평가 및 판독 보정인자에 대한 불확도 평가)

  • Seong-Yun Mok;Yeong-Rok Kang;Hyo-Jin Kim;Yong-Uk Kye;Hyun An
    • Journal of radiological science and technology
    • /
    • v.46 no.3
    • /
    • pp.219-229
    • /
    • 2023
  • In this study, basic characteristics such as reproducibility, linearity, and directionality of RPL glass dosimeters were evaluated to improve the reliability of dose evaluation through RPL glass dosimeters, and uncertainty elements such as sensitivity by glass element and magazine slot sensitivity were evaluated. Using a mathematical model to calibrate the measured values of the RPL glass dosimeter, the measurement uncertainty was calculated assuming an example. As a result of the characteristic evaluation, the RPL glass dosimeter showed excellent performance with a standard deviation of ±1% (1 SD) for the reproducibility of the reading process, a coefficient of determination for linearity of 0.99997. And the read-out of the RPL glass dosimeter are affected by the circular rotation direction of the glass dosimeter during irradiation, fading according to the period after irradiation, the number of laser pulses of the reader, and response degradation due to repeated reading, it is judged that measurement uncertainty can be reduced by irradiation and reading in consideration of these factors. In addition, it was confirmed that the dose should be determined by calculating the correction factors for the sensitivity of each element and, the sensitivity of each reading magazine slot. It is believed that the reliability of dosimetry using glass dosimeters can be improved by using a mathematical model for correction of glass dosimeter readings and calculating measurement uncertainty.

Investigation on Individual Variation of Organ Doses for Photon External Exposures: A Monte Carlo Simulation Study

  • Yumi Lee;Ji Won Choi;Lior Braunstein;Choonsik Lee;Yeon Soo Yeom
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.1
    • /
    • pp.50-64
    • /
    • 2024
  • Background: The reference dose coefficients (DCs) of the International Commission on Radiological Protection (ICRP) have been widely used to estimate organ doses of individuals for risk assessments. This approach has been well accepted because individual anatomy data are usually unavailable, although dosimetric uncertainty exists due to the anatomical difference between the reference phantoms and the individuals. We attempted to quantify the individual variation of organ doses for photon external exposures by calculating and comparing organ DCs for 30 individuals against the ICRP reference DCs. Materials and Methods: We acquired computed tomography images from 30 patients in which eight organs (brain, breasts, liver, lungs, skeleton, skin, stomach, and urinary bladder) were segmented using the ImageJ software to create voxel phantoms. The phantoms were implemented into the Monte Carlo N-Particle 6 (MCNP6) code and then irradiated by broad parallel photon beams (10 keV to 10 MeV) at four directions (antero-posterior, postero-anterior, left-lateral, right-lateral) to calculate organ DCs. Results and Discussion: There was significant variation in organ doses due to the difference in anatomy among the individuals, especially in the kilovoltage region (e.g., <100 keV). For example, the red bone marrow doses at 0.01 MeV varied from 3 to 7 orders of the magnitude depending on the irradiation geometry. In contrast, in the megavoltage region (1-10 MeV), the individual variation of the organ doses was found to be negligibly small (differences <10%). It was also interesting to observe that the organ doses of the ICRP reference phantoms showed good agreement with the mean values of the organ doses among the patients in many cases. Conclusion: The results of this study would be informative to improve insights in individual-specific dosimetry. It should be extended to further studies in terms of many different aspects (e.g., other particles such as neutrons, other exposures such as internal exposures, and a larger number of individuals/patients) in the future.

Correlation of Effective Dose and BMI in Radioiodine($^{131}I$) Therapy (방사성옥소($^{131}I$) 치료 시 유효선량과 체질량지수의 상관관계)

  • Shin, Gyoo-Seul;Kim, Gun-Jae;Dong, Kyung-Rae;Kim, Hyun-Soo
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.11-16
    • /
    • 2008
  • Purpose : The aim of this study was to predict radiation dose at 1 meter with BMI(body mass index) in thyroid cancer patients treated with radio-iodine and provide the efficient guideline in the management of patients. Methods : 140 patients from thyroidectomy for thyroid cancer were enrolled. All subjects under went 150 mCi radio-iodine therapy and performed whole body scan 1 week later. BMI(weight divided by square of height) was calculated to evaluate the amount of fatty tissue indirectly. The radiation dose at 1 meter was measured initially and on 2nd days. the relation of values with BMI were analyzed statically. As for the method of statistical analysis, using Med calc Version 9,2,2,0 Program. Results : (1) The initial effective dose was inversely correlated with the BMI. Significance level was 0.0004. (2) We obtained the following formula from the data of initial effective dose and BMI: Y = -30.91X + 350.4(${\mu}Sv/h$)(Y: initial radiation dose, x: Group). (3) After 21.55 hours, than radiation dose was less than those recommended by ICRP or NRC in 53% of the population. Conclusion : Using BMI, the initial radiation dose and 2nd days dose can be predicted in thyroid cancer patients before radio-iodine therapy. It may be used for predicting the time of discharge and control the isolation room. We were able to predict the radiation exposure after discharge using this calculated value.

  • PDF

A Performance Evaluation of Diagnostic X-ray Unit Depends on the Hospitals Size (병원 규모별 진단용 X선 발생장치의 성능 평가)

  • Park, Ju-Hun;Im, In-Chul;Dong, Kyung-Rae;Kang, Se-Sik
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.1
    • /
    • pp.31-36
    • /
    • 2009
  • The purpose of this study is to measure the tube voltage, the tube current/volume, exposure time and exposure dose of diagnostic X-ray unit in each doctor offices, hospitals and general hospitals for evaluating the performance of such device, to learn the method and technology of its measurement and to suggest its importance. Research subjects were total 30 X-ray units and divided into groups of 10 X-ray units each. The tube voltage, the tube current/volume, exposure time and exposure dose were measured using percentage average error, and then reproducibility of exposure dose was measured through calculating coefficient of variation. The results are like followings; The tube voltage correctness examination showed that incongruent devices among total 30 X-ray units were 5 devices (16.7%). The tube current correctness examination showed that incongruent X-ray units were 3 devices (10.0%). The tube current volume correctness examination showed that incongruent X-ray units were 4 devices (13.3%). Finally, according to exposure time correctness examination, incongruent X-ray units were 5 devices (16.7%) and according to reproducibility examination of exposure dose, incongruent X-ray units were 7 devices (23.3%). Above results showed serious problem in performance management based on management regulation of diagnostic X-ray unit; it means that regular checkout and safety management are required, and as doing so, patients will be able to receive good quality of medical service by the reduction of radiation exposure time, image quality administration, unnecessary retake and etc. Therefore, this study suggests that the performance of diagnostic X-ray units should be checked regularly.

Effective Radiologic Doses and Lifetime Attributable Risks in Patients with Trauma Critical Pathway Activation (중증외상환자의 전산화단층촬영 및 중재술에 의한 방사선 유효선량 및 생애 귀속위험도)

  • Lee, Wonhyo;Kong, Taeyoung;Kim, Seunghwan;You, Je Sung;Park, Yoo Seok;Lee, Jae Gil;Chung, Sung Phil
    • Journal of Trauma and Injury
    • /
    • v.26 no.3
    • /
    • pp.198-206
    • /
    • 2013
  • Purpose: This study was performed to calculate and analyze the effective radiation doses from computed tomography (CT) and radiologic intervention in patients in the emergency department (ED) with trauma critical pathway (CP) activation and further to estimate the lifetime attributable risks (LARs) for the incidence of and mortality from cancers induced by the radiation dose. Methods: Through a retrospective electrical chart review of 104 injured patients who trauma critical pathway were activated from November 2012 to March 2013, we calculated effective radiologic doses by taking the product of the dose-linear product of the scan and the conversion coefficient. After a determination of the image results, we divided the patients into two groups, negative or positive, and calculated the effective dose for each group. With these results, we estimated the LARs for the incidence of and the mortality from cancers by using the table in the Biologic Effects of Ionizing Radiation (BEIR)-VII report. Results: A total of 76 patients were enrolled. The mean age was $49.0{\pm}8.5$ years. The mean injury severity score (ISS) was $12.7{\pm}8.4$. The cumulative effective dose (CED) for individual patients varied from 2.8 mSv to 238.8 mSv, and the mean was $47.6{\pm}39.9$ mSv. The CED in patients with an $ISS{\geq}16$($63.2{\pm}26.6$ mSv) was higher than that of patients whose ISS<16($33.5{\pm}23.1$ mSv) (p<0.001). The CED in patients who were treated with surgery or intervention($69.0{\pm}45.2$ mSv) was higher than that of patients who were treated conservatively($33.6{\pm}22.4$ mSv) (p<0.001). The LARs for cancer incidence and mortality were $328.5{\pm}308.6$ and $189.0{\pm}159.3$ per 100,000 people, respectively. Conclusion: The CED and the LAR for trauma CP-activated patients in the ED were significant, so efforts should be made to decrease the effective dose received by severely injured patients.

LiF TLD in TLD Holder for In Vivo Dosimetry (생체 내 선량측정을 위한, TLD홀더에 넣은 LiF TLD)

  • Kim Sookil;Loh John J.K.;Min Byungnim
    • Radiation Oncology Journal
    • /
    • v.19 no.3
    • /
    • pp.293-299
    • /
    • 2001
  • Prupose : LiF TLD has a problem to be used in vivo dosimetry because of the toxic property of LiF. The aim of this study is to develop new dosimeter with LiF TLD to be used in vivo dosimetry. Materials and methods : We designed and manufactured the teflon box(here after TLD holder) to put TLD in. The external size of TLD holder is $4\times4\times1\;mm^3$ To estimate the effect of TLD holder on TLD response for radiation, the linearity of TLD response to nominal dose were measured for TLD in TLD holder. Measurement were peformed in the 10 MV x-ray beam with LiF TLD using a solid water phantom at SSD of 100 cm. Percent Depth Dose (PDD) and Tissue-Maximum Ratio (TMR) with varying phantom thickness on TLD were measured to find the effect of TLD holder on the dose coefficient used for dose calculation in radiation therapy. Results : The linearity of response of TLD in TLD holder to the nominal dose was improved than TLD only used as dosimeter And in various measurement conditions, it makes a marginnal difference between TLD in TLD holder and TLD only in their responses. Conclusion : It was proven that the TLD in TLD holder as a new dosimetry could be used in vivo dosimetry.

  • PDF

Impact of Photon-Counting Detector Computed Tomography on Image Quality and Radiation Dose in Patients With Multiple Myeloma

  • Alexander Rau;Jakob Neubauer;Laetitia Taleb;Thomas Stein;Till Schuermann;Stephan Rau;Sebastian Faby;Sina Wenger;Monika Engelhardt;Fabian Bamberg;Jakob Weiss
    • Korean Journal of Radiology
    • /
    • v.24 no.10
    • /
    • pp.1006-1016
    • /
    • 2023
  • Objective: Computed tomography (CT) is an established method for the diagnosis, staging, and treatment of multiple myeloma. Here, we investigated the potential of photon-counting detector computed tomography (PCD-CT) in terms of image quality, diagnostic confidence, and radiation dose compared with energy-integrating detector CT (EID-CT). Materials and Methods: In this prospective study, patients with known multiple myeloma underwent clinically indicated whole-body PCD-CT. The image quality of PCD-CT was assessed qualitatively by three independent radiologists for overall image quality, edge sharpness, image noise, lesion conspicuity, and diagnostic confidence using a 5-point Likert scale (5 = excellent), and quantitatively for signal homogeneity using the coefficient of variation (CV) of Hounsfield Units (HU) values and modulation transfer function (MTF) via the full width at half maximum (FWHM) in the frequency space. The results were compared with those of the current clinical standard EID-CT protocols as controls. Additionally, the radiation dose (CTDIvol) was determined. Results: We enrolled 35 patients with multiple myeloma (mean age 69.8 ± 9.1 years; 18 [51%] males). Qualitative image analysis revealed superior scores (median [interquartile range]) for PCD-CT regarding overall image quality (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), edge sharpness (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), image noise (4.0 [4.0-4.0] vs. 3.0 [3.0-4.0]), lesion conspicuity (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), and diagnostic confidence (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]) compared with EID-CT (P ≤ 0.004). In quantitative image analyses, PCD-CT compared with EID-CT revealed a substantially lower FWHM (2.89 vs. 25.68 cy/pixel) and a significantly more homogeneous signal (mean CV ± standard deviation [SD], 0.99 ± 0.65 vs. 1.66 ± 0.5; P < 0.001) at a significantly lower radiation dose (mean CTDIvol ± SD, 3.33 ± 0.82 vs. 7.19 ± 3.57 mGy; P < 0.001). Conclusion: Whole-body PCD-CT provides significantly higher subjective and objective image quality at significantly reduced radiation doses than the current clinical standard EID-CT protocols, along with readily available multi-spectral data, facilitating the potential for further advanced post-processing.

The estimation of friction coefficient by using entropy theory in open channels (엔트로피 이론에 의한 개수로 마찰계수 산정)

  • Choo, Tai Ho;Kwak, Kil Sin;Yun, Gwan Seon;Yoon, Hyeon Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2868-2875
    • /
    • 2015
  • Both the friction velocity and the friction coefficient have to be estimated to determine flow characteristic in an open channel. In spite of the importances in an open channel, the complete interpretation is highly difficult because of free water surface, the complex of cross section and the various hydraulic parameters. The researches related to the friction factor are based on empirical outcome. Therefore, the equations are difficult to be generally applied. For that reason, the new friction factor estimation equation using the entropy concept was proposed in the present study, and the data measured in rectangular and trapezoid cross sections was used to verify the accuracy of equation. The advantage of the proposed equation dose not use the energy slope term which is difficult to be measured and to be estimated in an open channel. In addition, the proposed method showed that the accurate friction factor f can be estimated on the Basis of theoretical background.

Evaluation of Photoneutron Dose for Prostate Cancer Radiation Therapy by Using Optically Stimulated Luminescence Dosimeter (OSLD) (전립선암 방사선치료 시 광자극발광선량계를 이용한 광중성자선량 평가)

  • Lee, Joo-Ah;Back, Geum-Mun;Kim, Yeon-Soo;Son, Soon-Yong;Choi, Kwan-Woo;Yoo, Beong-Gyu;Jeong, Hoi-Woun;Jung, Jae-Hong;Kim, Ki-Won;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.37 no.2
    • /
    • pp.125-134
    • /
    • 2014
  • This study is to provide basic information regarding photoneutron doses in terms of radiation treatment techniques and the number of portals in intensity-modulated radiation therapy (IMRT) by measuring the photoneutron doses. Subjects of experiment were 10 patients who were diagnosed with prostate cancer and have received radiation treatment for 5 months from September 2013 to January 2014 in the department of radiation oncology in S hospital located in Seoul. Thus, radiation treatment plans were created for 3-Dimensional Conformal Radiotherapy (3D-CRT), Volumetric-Modulated Arc Radiotherapy (VMAT), IMRT 5, 7, and 9 portals. The average difference of photoneutron dose was compared through descriptive statistics and variance analysis, and analyzed influence factors through correlation analysis and regression analysis. In summarized results, 3D-CRT showed the lowest average photoneutron dose, while IMRT caused the highest dose with statistically significance (p <.01). The photoneutron dose by number of portals of IMRT was $4.37{\pm}1.08mSv$ in average and statistically showed very significant difference among the number of portals (p <.01). Number of portals and photoneutron dose are shown that the correlation coefficient is 0.570, highly statistically significant positive correlation (p <.01). As a result of the linear regression analysis of number of portals and photoneutron dose, it showed that photoneutron dose significantly increased by 0.373 times in average as the number of portals increased by 1 stage. In conclusion, this study can be expected to be used as a quantitative basic data to select an appropriate IMRT plans regarding photoneutron dose in radiation treatment for prostate cancer.