• 제목/요약/키워드: Dose (conversion) coefficient

검색결과 18건 처리시간 0.022초

ABSORBED INTERNAL DOSE CONVERSION COEFFICIENTS FOR DOMESTIC REFERENCE ANIMALS AND PLANT

  • Keum, Dong-Kwon;Jun, In;Lim, Kwang-Muk;Choi, Yong-Ho
    • Nuclear Engineering and Technology
    • /
    • 제42권1호
    • /
    • pp.89-96
    • /
    • 2010
  • This paper describes the methodology of calculating the internal dose conversion coefficient in order to assess the radiological impact on non-human species. This paper also presents the internal dose conversion coefficients of 25 radionuclides ($^3H,\;^7Be,\;^{14}C,\;^{40}K,\;^{51}Cr,\;^{54}Mn,\;^{59}Fe,\;^{58}Co,\;^{60}Co,\;^{65}Zn,\;^{90}Sr,\;^{95}Nb,\;^{99}Tc,\;^{106}Ru,\;^{129}I,\;^{131}I,\;^{136}Cs,\;^{137}Cs,\;^{140}Ba,\;^{140}La,\;^{144}Ce,\;^{238}U,\;^{239}Pu,\;^{240}Pu$) for domestic seven reference animals (roe deer, rat, frog, snake, Chinese minnow, bee, and earthworm) and one reference plant (pine tree). The uniform isotropic model was applied in order to calculate the internal dose conversion coefficients. The calculated internal dose conversion coefficient (${\mu}Gyd^{-1}$ per $Bqkg^{-1}$) ranged from $10^{-6}$ to $10^{-2}$ according to the type of radionuclides and organisms studied. It turns out that the internal does conversion coefficient was higher for alpha radionuclides, such as $^{238}U,\;^{239}Pu$, and $^{240}Pu$, and for large organisms, such as roe deer and pine tree. The internal dose conversion coefficients of $^{239}U,\;^{240}Pu,\;^{238}U,\;^{14}C,\;^3H$, and $^{99}Tc$ were independent of the organism.

PMMA 평판형 팬텀에서의 중성자 선량당량 환산계수의 새로운 계산법 (A New Approach for the Calculation of Neutron Dose Equivalent Conversion Coefficients for PMMA Slab Phantom)

  • 김종경;김종오
    • Journal of Radiation Protection and Research
    • /
    • 제21권4호
    • /
    • pp.297-311
    • /
    • 1996
  • ANSI는 교정용 팬텀으로 PMMA 평판형 팬텀을 제시하면서 이에 대한 선량당량환산 계수를 계산하는 방법을 제시하였다. PMMA 평판형 팬텀에 대한 광자의 선량당량환산계수는 ICRU조직 정육면체 팬텀에 대한 후방산란인자 및 선량당량환산계수와 PMMA 평판에 대한 후 방산란인자를 각각 구한 후 이를 이용하여 간접적으로 계산하도록 제시하였다. 그러나 중성자에 대한 PMMA 평판형 팬텀에서의 선량당량환산계수의 계산방법은 아직도 제시하지 못하고 있다. 이 연구에서는 ANSI가 제시한 광자에 대한 선량당량환산계수 계산방법을 중성자에 대해 적용하여 PMMA 평판에 대한 중성자의 선량당량환산계수를 최초로 계산하였다. 중성자에 대해 선질가중조직커마를 도입하여 ICRU 정육번체와 PMMA 평판에서 후방산간인자를 계산하였고 ICRU 정육면체에 대한 중성자의 선량당량환산계수를 계산한 후 이를 이용하여 PMMA 평판에서의 중성자에 대한 선량당량환산계수를 계산하였다. 그 결과 PMMA 평판에 대한 중성자의 선량당량환산계수는 대부분의 에너지 영역에서 ICRU 정육면체에 대한 중성자의 선량당량환산계수와 10% 이내의 차이를 보였으나 1eV. 1keV, 4 MeV에서는 $15{\sim}20%$, 정도 크게 나타났다.

  • PDF

Radiation Dose from Computed Tomography Scans for Korean Pediatric and Adult Patients

  • Won, Tristan;Lee, Ae-Kyoung;Choi, Hyung-do;Lee, Choonsik
    • Journal of Radiation Protection and Research
    • /
    • 제46권3호
    • /
    • pp.98-105
    • /
    • 2021
  • Background: In recent events of the coronavirus disease 2019 (COVID-19) pandemic, computed tomography (CT) scans are being globally used as a complement to the reverse-transcription polymerase chain reaction (RT-PCR) tests. It will be important to be aware of major organ dose levels, which are more relevant quantity to derive potential long-term adverse effect, for Korean pediatric and adult patients undergoing CT for COVID-19. Materials and Methods: We calculated organ dose conversion coefficients for Korean pediatric and adult CT patients directly from Korean pediatric and adult computational phantoms combined with Monte Carlo radiation transport techniques. We then estimated major organ doses delivered to the Korean child and adult patients undergoing CT for COVID-19 combining the dose conversion coefficients and the international survey data. We also compared our Korean dose conversion coefficients with those from Caucasian reference pediatric and adult phantoms. Results and Discussion: Based on the dose conversion coefficients we established in this study and the international survey data of COVID-19-related CT scans, we found that Korean 7-year-old child and adult males may receive about 4-32 mGy and 3-21 mGy of lung dose, respectively. We learned that the lung dose conversion coefficient for the Korean child phantom was up to 1.5-fold greater than that for the Korean adult phantom. We also found no substantial difference in dose conversion coefficients between Korean and Caucasian phantoms. Conclusion: We estimated radiation dose delivered to the Korean child and adult phantoms undergoing COVID-19-related CT examinations. The dose conversion coefficients derived for different CT scan types can be also used universally for other dosimetry studies concerning Korean CT scans. We also confirmed that the Caucasian-based CT organ dose calculation tools may be used for the Korean population with reasonable accuracy.

선량 환산 관례를 이용한 생애유효선량 및 라돈피폭 위험도 예측: 대학 강의실 라돈농도 중심으로 (Prediction for the Lifetime Effective Dose and Radon Exposure Risk by using Dose Conversion Convention: Base on the Indoor Radon Concentration of Lecture Room in a University)

  • 이재승;권대철
    • 대한의용생체공학회:의공학회지
    • /
    • 제39권6호
    • /
    • pp.243-249
    • /
    • 2018
  • The indoor radon concentration was measured in the lecture room of the university and the radon concentration was converted to the amount related to the radon exposure using the dose conversion convention and compared with the reference levels for the radon concentration control. The effect of indoor radon inhalation was evaluated by estimating the life effective dose and the risk of exposure. To measure the radon concentration, measurements were made with a radon meter and a dedicated analysis Capture Ver. 5.5 program in a university lecture room from January to February 2018. The radon concentration measurement was carried out for 5 consecutive hours for 24 hours after keeping the airtight condition for 12 hours before the measurement. Radon exposure risk was calculated using the radon dose and dose conversion factor. Indoor radon concentration, radon exposure risk, and annual effective dose were found within the 95% confidence interval as the minimum and maximum boundary ranges. The radon concentration in the lecture room was $43.1-79.1Bq/m^3$, and the maximum boundary range within the 95% confidence interval was $77.7Bq/m^3$. The annual effective dose was estimated to be 0.20-0.36 mSv/y (mean 0.28 mSv/y). The life-time effective dose was estimated to be 0.66-1.18 mSv (mean $0.93{\pm}0.08mSv$). Life effective doses were estimated to be 0.88-0.99 mSv and radon exposure risk was estimated to be 12.4 out of 10.9 per 100,000. Radon concentration was measured, dose effective dose was evaluated using dose conversion convention, and degree of health hazard by indoor radon exposure was evaluated by predicting radon exposure risk using nominal hazard coefficient. It was concluded that indoor living environment could be applied to other specific exposure situations.

The System of Radiation Dose Assessment and Dose Conversion Coefficients in the ICRP and FGR

  • Kim, Sora;Min, Byung-Il;Park, Kihyun;Yang, Byung-Mo;Suh, Kyung-Suk
    • Journal of Radiation Protection and Research
    • /
    • 제41권4호
    • /
    • pp.424-435
    • /
    • 2016
  • Background: The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. Materials and Methods: The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. Results and Discussion: A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. Conclusion: The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment.

Unveiling the direct conversion X-ray sensing potential of Brucinium benzilate and N-acetylglcyine

  • T. Prakash;C. Karnan;N. Kanagathara;R.R. Karthieka;B.S. Ajith Kumar;M. Prabhaharan
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2190-2194
    • /
    • 2024
  • The study investigates the dose-dependent direct X-ray sensing characteristics of Brucinium benzilate (BB) and N-acetylglycine (NAG) organic crystals. BB and NAG were prepared as a slurry and deposited as a thick film on a patterned metal electrode. The X-ray induced photocurrent response was examined for various exposure doses using an intraoral pulsed 70 keV X-ray machine connected to a source meter. Subsequently, the morphological properties and thickness of the thick films were analyzed using scanning electron microscopy (SEM). At a photon energy of 70 keV, the attenuation coefficient values for NAG and BB crystals were determined to be approximately 0.181 and 0.178 cm2/g, respectively. The X-ray stopping power of the crystals was measured using a suniray-2 X-ray imaging system. To evaluate the responsiveness of the sensors, the photocurrent sensitivity and noise equivalent dose rate (NED) were calculated for both thick films. The findings demonstrated a noteworthy capability of sensing low doses (mGy), thereby suggesting the potential application of these organic materials in X-ray sensor development.

Bias-corrected Hp(10)-to-Organ-Absorbed Dose Conversion Coefficients for the Epidemiological Study of Korean Radiation Workers

  • Jeong, Areum;Kwon, Tae-Eun;Lee, Wonho;Park, Sunhoo
    • Journal of Radiation Protection and Research
    • /
    • 제47권3호
    • /
    • pp.158-166
    • /
    • 2022
  • Background: The effects of radiation on the health of radiation workers who are constantly susceptible to occupational exposure must be assessed based on an accurate and reliable reconstruction of organ-absorbed doses that can be calculated using personal dosimeter readings measured as Hp(10) and dose conversion coefficients. However, the data used in the dose reconstruction contain significant biases arising from the lack of reality and could result in an inaccurate measure of organ-absorbed doses. Therefore, this study quantified the biases involved in organ dose reconstruction and calculated the bias-corrected Hp(10)-to-organ-absorbed dose coefficients for the use in epidemiological studies of Korean radiation workers. Materials and Methods: Two major biases were considered: (a) the bias in Hp(10) arising from the difference between the dosimeter calibration geometry and the actual exposure geometry, and (b) the bias in air kerma-to-Hp(10) conversion coefficients resulting from geometric differences between the human body and slab phantom. The biases were quantified by implementing personal dosimeters on the slab and human phantoms coupled with a Monte Carlo method and considered to calculate the bias-corrected Hp(10)-to-organ-absorbed dose conversion coefficients. Results and Discussion: The bias in Hp(10) was significant for large incident angles and low energies (e.g., 0.32 for right lateral at 218 keV), whereas the bias in dose coefficients was significant for the posteroanterior (PA) geometry only (e.g., 0.79 at 218 keV). The bias-corrected Hp(10)-to-organ-absorbed dose conversion coefficients derived in this study were up to 3.09- fold greater than those from the International Commission on Radiological Protection publications without considering the biases. Conclusion: The obtained results will aid future studies in assessing the health effects of occupational exposure of Korean radiation workers. The bias-corrected dose coefficients of this study can be used to calculate organ doses for Korean radiation workers based on personal dose records.

MIRD 인형팬텀의 넓고 평행한 감마선빔에 대한 선량 환산계수 계산 (Calculation of Dose Conversion Coefficients in the Anthropomorphic MIRD Phantom in Broad Unidirectional Beams of Monoenergetic Photons)

  • 장재권;이재기
    • Journal of Radiation Protection and Research
    • /
    • 제22권1호
    • /
    • pp.47-58
    • /
    • 1997
  • MCNP4A 코드를 이용하여 MIRD 인형팬텀의 정면과 후방에서 입사하는 넓고 평행한 감마선빔에 대한 단위 공기커마당 유효선량 환산계수와 단위 플르언스당 장기의 등가선량을 계산하였다. 본 연구에서 고려한 감마선은 0.03-10 MeV 에너지 구간에서 20개의 단일에너지에 대해 수행되었다. 환산계수의 계산결과를 ICRP/ICRU의 연구결과 발표예정 출판물에 주어진 해당되는 값과 비교한 결과 편차 10%이내에서 일치하고 있다. 결과의 차이가 발생한 이유는 MIRD 팬텀과 ADAM/EVE 팬텀의 기하학적 차이가 주원인이며 또한 계산에 사용된 전산코드와 단면적 차이 등으로 판단된다. 특정 식도 모델을 사용한 결과로부터 얻어진 유효선량과 흉선과 췌장에 대한 등가선량을 채택함으로써 얻어지는 유효선량은 약간(최고 5%)의 차이를 보인다. 기타장기로부터 상부대장을 제외했을 때 본 연구에서 다루었던 감마선 선량학적 측면의 경우에서는 중요하지 않은 것으로 나타났다.

  • PDF

DEVELOPMENT OF POINT KERNEL SHIELDING ANALYSIS COMPUTER PROGRAM IMPLEMENTING RECENT NUCLEAR DATA AND GRAPHIC USER INTERFACES

  • Kang, Sang-Ho;Lee, Seung-Gi;Chung, Chan-Young;Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • 제26권3호
    • /
    • pp.215-224
    • /
    • 2001
  • In order to comply with revised national regulationson radiological protection and to implement recent nuclear data and dose conversion factors, KOPEC developed a new point kernel gamma and beta ray shielding analysis computer program. This new code, named VisualShield, adopted mass attenuation coefficient and buildup factors from recent ANSI/ANS standards and flux-to-dose conversion factors from the International Commission on Radiological Protection (ICRP) Publication 74 for estimation of effective/equivalent dose recommended in ICRP 60. VisualShieid utilizes graphical user interfaces and 3-D visualization of the geometric configuration for preparing input data sets and analyzing results, which leads users to error free processing with visual effects. Code validation and data analysis were performed by comparing the results of various calculations to the data outputs of previous programs such as MCNP 4B, ISOSHLD-II, QAD-CGGP, etc.

  • PDF

몬테칼로 시뮬레이션에 의한 지표면 오염 방사선장에서의 유효선량 평가 (Assessment of Effective Doses in the Radiation Field of Contaminated Ground Surface by Monte Carlo Simulation)

  • 장재권;이재기;장시영
    • Journal of Radiation Protection and Research
    • /
    • 제24권4호
    • /
    • pp.205-213
    • /
    • 1999
  • 지표에 오염된 방사성핵종의 단위방사능당 유효선량환산계수를 남성과 여성 인형모의피폭체와 MCNP4A 코드를 이용하여 계산하였다. 모사실험은 40 keV에서 10 MeV 영역의 19개 단일 에너지에 대한 유효선량 계산을 수행하였다. 에너지에 따른 단위 선원강도에 대한 유효선량 E를 기존 연구자들의 결과물인 유효선량당량 $H_E$와 비교한 결과, 본 연구의 E값이 USEPA의 FGR에 주어진 $H_E$ 값에 비해 30%의 편차를 보였다. 에너지와 유효선량의 관계를 polynomial fitting을 통해 구한 유효선량 감응함수는 다음과 같다. $f({\varepsilon})[fSv\;m^2]=\;0.0634\;+\;0.727{\varepsilon}-0.0520{\varepsilon}^2+0.00247{\varepsilon}^3$ 여기서, ${\varepsilon}$는 감마선의 에너지(MeV)이다. 감응함수와 ICRP 38의 방사성핵종 붕괴 자료를 이용하여 지표면과 공기 오염의 단위 방사능농도에 대한 유효선량환산계수를 계산한 후 DOSEFACTOR코드를 사용하여 계산한 베타선에 의한 피부선량을 합하여 90개의 중요 핵종들에 대한 환산계수를 평가하여 도표로 제시하였다. 기존 자료들과 비교를 통해 기존 환산계수를 사용할 경우 특히 저에너지 감마선이나 고에너지 베타선을 방출하는 핵종에 대해서 상당한 과소평가가 이루어질 수 있음을 확인할 수 있었다.

  • PDF