• 제목/요약/키워드: Dosage strength

검색결과 222건 처리시간 0.029초

Durability of self compacted concrete containing slag in hot climate

  • Yahiaoui, Walid;Kenai, Said;Menadi, Belkacem;Kadri, El-Hadj
    • Advances in concrete construction
    • /
    • 제5권3호
    • /
    • pp.271-288
    • /
    • 2017
  • This paper aims to investigate the effects of replacing cement with ground granulated blast furnace slag (GGBFS) in self compacting concrete in the fresh and hardened state. The performance of SCC in moderate climate is well investigated but few studies are available on the effect of hot environment. In this paper, the effect of initial water-curing period and curing conditions on the performance of SCC is reported. Cement was substituted by GGBFS by weight at two different levels of substitution (15% and 25%). Concrete specimens were stored either in a standard environment (T=$20^{\circ}C$, RH=100%) or in the open air in North Africa during the summer period (T=35 to $40^{\circ}C$; R.H=50 to 60%) after an initial humid curing period of 0, 3, 7 or 28 days. Compressive strength at 28 and 90 days, capillary absorption, sorptivity, water permeability, porosity and chloride ion penetration were investigated. The results show that the viscosity and yield stress are decreased with increasing dosage of GGBFS. The importance of humid curing in hot climates in particular when GGBFS is used is also proved. The substitution of cement by GGBFS improves SCC durability at long term. The best performances were observed in concrete specimens with 25% GGBFS and for 28 days water curing.

PNS계 고성능 감수제와 시멘트 수용성 알칼리양과의 상용성이 콘크리트 물성에 미치는 영향 (Effects of compatibility between PNS Superplasticzer and soluble alkali of cements on performances of concrete)

  • 안태호;박준희;소광호
    • 한국결정성장학회지
    • /
    • 제27권4호
    • /
    • pp.173-177
    • /
    • 2017
  • PNS 감수제와 시멘트 페이스트의 유동성의 관계를 평가하기 위해 물시멘트비 35 %에 PNS의 감수제 첨가하여 세 가지 시멘트에 대해 평가하였다. 세 가지 시멘트의 화학적 성질은 XRD, XRF로 평가하고, 물시멘트비 33 %인 콘크리트에 대한 $Na_2SO_4$의 첨가 효과는 압축강도, 슬럼프, 공기 함량의 측정에 의해 평가하였다. 실험 결과는 시멘트 A 및 C에 황산나트륨 2.6 %를 첨가하면 슬럼프 손실이 개선됨을 보여 주었으며, 시멘트 E의 경우 황산나트륨 1.3 % 첨가가 효과적이었다.

Effects of E-beam treatment on the interfacial and mechanical properties of henequen/polypropylene composites

  • Cho, Dong-Hwan;Lee, Hyun-Seok;Han, Seong-Ok;Drzal, Lawrence T.
    • Advanced Composite Materials
    • /
    • 제16권4호
    • /
    • pp.315-334
    • /
    • 2007
  • In the present study, chopped henequen natural fibers without and with surface modification by electron beam (E-beam) treatment were incorporated into a polypropylene matrix. Prior to composite fabrication, a bundle of raw henequen fibers were treated at various E-beam intensities from 10 kGy to 500 kGy. The effect of E-beam intensity on the interfacial, mechanical and thermal properties of randomly oriented henequen/polypropylene composites with the fiber contents of 40 vol% was investigated focusing on the interfacial shear strength, flexural and tensile properties, dynamic mechanical properties, thermal stability, and fracture behavior. Each characteristic of the material strongly depended on the E-beam intensity irradiated, showing an increasing or decreasing effect. The present study demonstrates that henequen fiber surfaces can be modified successfully with an appropriate dosage of electron beam and use of a low E-beam intensity of 10 kGy results in the improvement of the interfacial properties, flexural properties, tensile properties, dynamic mechanical properties and thermal stability of henequen/polypropylene composites.

고농도 지료에서의 PCC 충전이 종이 물성에 미치는 영향 (Effects of PCC Loading at Thick Stock on the Paper Properties)

  • 원종명;조병욱;이용규
    • 펄프종이기술
    • /
    • 제44권4호
    • /
    • pp.62-68
    • /
    • 2012
  • This study was carried out to evaluate the effect of PCC loading at thick stock on the physical properties of paper. The effect of starch addition(2, 4 and 6%) and mixing time(5, 10 and 20 min.) on the filler retention and paper properties were investigated. Optimum dosage of cationic starch as a fixing agent was 4%, and mixing time did not showed any significant effect on the filler retention. PCC loading at thick stock was more effective to improve bulk and opacity than PCC loading at thin stock, although their improvement was not so significant. It was also found that the strength properties could be improved by the loading at thick stock. PCC loading method at thick stock could be considered as one of potential approaches for further improving of paper properties, although further research works are required in order to apply the PCC loading at thick stock in the paper mill.

Effect of curing temperature on the properties of ground granulated blast furnace slag-cement bentonite slurry

  • Kim, Taeyeon;Lee, Bongjik;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • 제29권3호
    • /
    • pp.237-247
    • /
    • 2022
  • To investigate the curing temperature effect on the engineering properties of ground granulated blast furnace slag-cement bentonite (GGBS-CB) slurry for cutoff walls, the laboratory experiments including the setting time, unconfined compressive strength, and permeability tests were carried out. The mixing procedure for GGBS-CB slurry was as follows: (1) montmorillonite-based bentonite slurry was first fabricated and hydrated for four hours, and (2) cement or GGBS with cement was added to the bentonite slurry. The dosage range of GGBS was from 0 to 90 % of cement by mass fraction. The GGBS-CB slurry specimens were cured and stored in environmental chamber at temperature of 14±1, 21±1, 28±1℃ and humidity of 95±2% until target days. The highest average temperature of three seasons in South Korea was selected and used for the tests. The experimental results indicated that in early age (less than 28 days) of curing the engineering properties of GGBS-CB slurry were primarily affected by the curing temperature, whereas the replacement ratio of GGBS became a main factor to determine the properties of the slurry as the curing time increased.

Optimization of mineral admixtures and retarding admixture for high-performance concrete by the Taguchi method

  • Chao-Wei Tang
    • Computers and Concrete
    • /
    • 제32권2호
    • /
    • pp.185-206
    • /
    • 2023
  • This article aimed to explore the optimization of mineral admixtures and retarding admixture for high-performance concrete. In essence, fresh concrete can be regarded as a mixture in which both coarse and fine aggregates are suspended in a cement-based matrix paste. Based on this view, the test procedure was divided into three progressive stages of binder paste, mortar, and concrete to explore their rheological behavior and mechanical properties respectively. At each stage, there were four experimental control factors, and each factor had three levels. In order to reduce the workload of the experiment, the Taguchi method with an L9(34) orthogonal array and four controllable three-level factors was adopted. The test results show that the use of the Taguchi method effectively optimized the composition of high-performance concrete. The slump of the prepared concrete was above 18 cm, and the slump flow was above 50 cm, indicating that it had good workability. On the other hand, the 28-day compressive strength of the hardened concretes was between 31.3-59.8 MPa. Furthermore, the analysis of variance (ANOVA) results showed that the most significant factor affecting the initial setting time of the fresh concretes was the retarder dosage, and its contribution percentage was 62.66%. On the other hand, the ANOVA results show that the most significant factor affecting the 28-day compressive strength of the hardened concretes was the water to binder ratio, and its contribution percentage was 79.05%.

Effect of rubber particles on properties and frost resistance of self-compacting concrete

  • Miao Liu;Jianhua Xiao;En Yang;Lijuan Su
    • Advances in concrete construction
    • /
    • 제16권5호
    • /
    • pp.269-276
    • /
    • 2023
  • In order to study the effect of rubber particle size and admixture on the frost resistance of self-compacting concrete, three self-compacting concrete specimens with equal volume replacement of fine aggregate by rubber particles of different particle sizes were prepared, while conventional self-compacting concrete was made as a comparison specimen. The degradation law of rubber aggregate self-compacted concrete under freeze-thaw cycles was investigated by fast-freezing method test. The results show that the rubber aggregate has some influence on the mechanical properties and freeze-thaw durability of the self-compacting concrete. With the increase of rubber aggregate, the compressive strength of self-compacting concrete gradually decreases, and the smaller the rubber aggregate particle size is, the smaller the effect on the compressive strength of the matrix; rubber aggregate can improve the frost resistance of self-compacting concrete, and the smaller the rubber particle size is, the more obvious the effect on the improvement of the frost resistance of the matrix under the same dosage. Through the research of this paper, it is recommended to use 60~80 purpose rubber aggregate and the substitution rate of 10% is chosen as the best effect.

광산화 공정을 이용한 Cu-EDTA 처리 - 인공 자외선램프와 태양광의 처리경향 비교 - (Treatment of Cu-EDTA by using Photocatalytic Oxidation Process - Comparison between UV Lamp and Solar Light -)

  • 신인수;최봉종;이승목;양재규
    • 한국물환경학회지
    • /
    • 제21권1호
    • /
    • pp.66-72
    • /
    • 2005
  • Effect of the pH, molar ratio of Cu(II)/EDTA, concentration of Cu(II)-EDTA and ionic strength on the photocatalytic oxidation(PCO) of Cu(II)-EDTA in solar light was studied in this work. Experimental results in this work were compared with previous results obtained with UV-lamp. In the kinetics, Cu(II)-EDTA decomposition was favorable below neutral pH. The removal of Cu(II) and DOC was favorable as $TiO_2$ dosage increased. The initial rate for the decomplexation of Cu(II)-EDTA linearly increased as the concentration of Cu(II)-EDTA increased. The removal of Cu(II) and DOC was not much affected by variation of ionic strength with $NaClO_4$ as a background ion while much reduction was observed in the presence of background ions having higher formal charges. The removal trend of Cu(II) and DOC with variation of ionic strength and concentration of Cu(II)-EDTA in solar light was similar with that in UV light. Variation of the molar ratio of Cu(II)/EDTA showed a negligible effect on the removal of both Cu(II) and DOC. However, removal of both Cu(II) and DOC was two-times greater than that previous results obtained with UV light.

자화수를 사용한 주입재의 역학적 특성에 관한 연구 (A Study on the Mechanical Properties of Grout Materials Using a Magnetic Field Treated Water)

  • 천병식;양형철;이상영
    • 한국지반공학회논문집
    • /
    • 제22권7호
    • /
    • pp.65-72
    • /
    • 2006
  • 본 연구는 배합수를 일반수 대신 자화수로 사용한 시멘트 그라우트재의 역학적 특성을 파악하는 것에 그 목적이 있다. Magnetic field를 통과한 물을 MFTW라 하는데, 이는 시멘트의 Bleeding 감소와 Freezing에 대한 저항을 향상시킴으로써 시멘트 사용량을 5% 절감시킬 수 있다고 알려져 있다. MFTW는 자기력에 의해 물 분자를 좀 더 작게 만들어서 물 분자의 활성도를 증가시켜 좀 더 쉽게 시멘트 분자의 Core Region으로 침투할 수 있게 함으로써 수화를 원활하게 한다. 결과적으로, MFTW는 좀 더 효율적인 수화를 일으키게 함으로써 콘크리트의 일축압축강도를 크게 향상시켰으며, 규산나트륨-시멘트그라우트재에 MFTW를 사용한 결과 일축압축강도가 약 $20{\sim}50%$ 증가되었음을 알 수 있었다.

시멘트콘크리트 포장의 고강도 고내구성을 위한 기초 연구 : Part II 최적배합콘크리트의 강도 및 내구특성 분석 (Fundamental Study on High Strength and High Durability Cement Concrete Pavement: Part II Strength and Durability Evaluations)

  • 윤경구;박철우;홍승호
    • 한국도로학회논문집
    • /
    • 제11권3호
    • /
    • pp.51-60
    • /
    • 2009
  • 본 연구에서는 고강도 고내구성 시멘트콘크리트 포장을 위하여 도출된 배합 콘크리트의 굳지않은 콘크리트 특성, 강도발현 특성, 염소이온의 투수특성 및 동결-융해에 대한 저항성 등의 역학적 내구적 특성을 분석하였다. 제시된 배합의 목표스럼프와 공기량은 적절한 혼화제의 사용으로 확보가 가능하나, 혼화제의 적정사용량은 충분한 현장배합실험을 통하여 구하여야 할 것이다. 단위시멘트량을 증가한 경우 일반적으로 강도가 증가하였으며 특히 재령 28일 이후의 강도가 지속적으로 증가하는 양상을 나타내었다. 휨강도는 그 특성상 단위시멘트량을 증가하더라도 뚜렷한 효과는 나타나지 않았다. 염소이온 침투저항성도 단위시멘트량보다는 재령에 따른 영향을 더 크게 받는 것으로 나타났다. 공기량에 가장 많은 영향을 받는 동결-융해 저항성은 각 실험변수에 대한 시험체를 공기량이 3% 이하 및 이상인 경우에 대하여 그리고 동결시 수돗물을 사용한 경우와 현장의 열악한 환경을 모사하기 위하여 4%의 NaCl 용액을 사용한 경우로 구분하여 실시하였다. 공기량에 상관없이 수돗물을 사용한 경우에는 동결-융해반복회수가 300회까지 상대동탄성계수나 표면의 손상이 거의 발생하지 않았다. 4% NaCl 용액을 사용한 경우에는 단위시멘트량이 현재의 한국도로공사의 표준배합인 경우 손상이 발생하였으며, 단위시멘트량이 동결-융해 저항성에 미치는 영향이 큰 것으로 나타났다. 따라서, 동결-융해에 대한 저항성을 충분히 확보하는 고내구성의 시멘트콘크리트 포장을 위해서는 단위시멘트량을 현재의 수준보다 증가시키는 것이 유리한 것으로 판단되며, 실험결과로부터 이러한 요구성능을 발휘하기 위해서는 단위시멘트량을 400kg/$m^3$ 이상으로 할 것을 권장한다.

  • PDF