DOI QR코드

DOI QR Code

Optimization of mineral admixtures and retarding admixture for high-performance concrete by the Taguchi method

  • Chao-Wei Tang (Department of Civil Engineering & Geomatics, Cheng Shiu University)
  • Received : 2021.12.27
  • Accepted : 2023.05.02
  • Published : 2023.08.25

Abstract

This article aimed to explore the optimization of mineral admixtures and retarding admixture for high-performance concrete. In essence, fresh concrete can be regarded as a mixture in which both coarse and fine aggregates are suspended in a cement-based matrix paste. Based on this view, the test procedure was divided into three progressive stages of binder paste, mortar, and concrete to explore their rheological behavior and mechanical properties respectively. At each stage, there were four experimental control factors, and each factor had three levels. In order to reduce the workload of the experiment, the Taguchi method with an L9(34) orthogonal array and four controllable three-level factors was adopted. The test results show that the use of the Taguchi method effectively optimized the composition of high-performance concrete. The slump of the prepared concrete was above 18 cm, and the slump flow was above 50 cm, indicating that it had good workability. On the other hand, the 28-day compressive strength of the hardened concretes was between 31.3-59.8 MPa. Furthermore, the analysis of variance (ANOVA) results showed that the most significant factor affecting the initial setting time of the fresh concretes was the retarder dosage, and its contribution percentage was 62.66%. On the other hand, the ANOVA results show that the most significant factor affecting the 28-day compressive strength of the hardened concretes was the water to binder ratio, and its contribution percentage was 79.05%.

Keywords

Acknowledgement

This research was funded by the Ministry of Science and Technology of Taiwan grant number MOST 108-2622-E-230-003-CC3. The author sincerely thanks the Ministry of Science and Technology of Taiwan for funding this research work.

References

  1. Al-Rousan, E.T., Khalid, H.R. and Rahman, M.K. (2023), "Fresh, mechanical, and durability properties of basalt fiber-reinforced concrete (BFRC): A review", Dev. Built Env., 14, 100155. https://doi.org/10.1016/j.dibe.2023.100155.
  2. Alyousef, R., Abbass, W., Aslam, F. and Gillani, S.A.A. (2023), "Characterization of high-performance concrete using limestone powder and supplementary fillers in binary and ternary blends under different curing regimes", Case Stud. Constr. Mater., 18, e02058. https://doi.org/10.1016/j.cscm.2023.e02058.
  3. ASTM C109/C109M-21 (2021), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens), ASTM International, West Conshohocken, PA, USA.
  4. ASTM C125-21 (2021), Standard Terminology Relating to Concrete and Concrete Aggregates, ASTM International, West Conshohocken, PA, USA.
  5. ASTM C143/143M-20 (2020), Standard Test Method for Slump of Hydraulic-Cement Concrete, ASTM International, West Conshohocken, PA, USA.
  6. ASTM C1437-20 (2020), Standard Test Method for Flow of Hydraulic Cement Mortar, ASTM International, West Conshohocken, PA, USA.
  7. ASTM C1611/C1611M-21 (2021), Standard Test Method for Slump Flow of Self-Consolidating Concrete, ASTM International, West Conshohocken, PA, USA.
  8. ASTM C172/C172M-17 (2017), Standard Practice for Sampling Freshly Mixed Concrete, ASTM International, West Conshohocken, PA, USA.
  9. ASTM C191-21 (2021), Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle, ASTM International, West Conshohocken, PA, USA.
  10. ASTM C192/C192M-19 (2019), Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken, PA, USA.
  11. ASTM C39/C39M-21 (2021), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA.
  12. ASTM C403/C403M-16 (2016), Standard Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance, ASTM International, West Conshohocken, PA, USA.
  13. ASTM C469/C469M-22 (2022), Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA, USA.
  14. ASTM C494/C494M-19 (2019), Standard Specification for Chemical Admixtures for Concrete, ASTM International, West Conshohocken, PA, USA.
  15. ASTM C496/C496M-17 (2017), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA.
  16. ASTM C807-21 (2021), Standard Test Method for Time of Setting of Hydraulic Cement Mortar by Modified Vicat Needle, ASTM International, West Conshohocken, PA, USA.
  17. Bazrafkan, A., Habibi, A. and Sayari, A. (2020), "Evaluation of mathematical models for prediction of slump, compressive strength and durability of concrete with limestone powder", Adv. Concrete Constr., 10(6), 463-478. https://doi.org/10.12989/acc.2020.10.6.463.
  18. Burak, U., Turanli, L. and Mehta, P.K. (2007), "High-volume natural pozzolan concrete for structural applications", ACI Mater. J., 104(5), 535-538. https://doi.org/10.14359/18910.
  19. Burris, L.E. and Kurtis, K.E. (2018), "Influence of set retarding admixtures on calcium sulfoaluminate cement hydration and property development", Cement Concrete Res., 104, 105-113. https://doi.org/10.1016/j.cemconres.2017.11.005.
  20. Cao, L., Guo, J., Tian, J., Hu, M., Guo, C., Xu, Y., Wang, M. and Fan, J. (2018), "The ability of sodium metasilicate pentahydrate to adjust the compatibility between synthetic fluid loss additives and retarders applying in oil well cement", Constr. Build. Mater., 158, 835-846. https://doi.org/10.1016/j.conbuildmat.2017.08.185.
  21. Chan, Y. and Chu, S. (2004), "Effect of silica fume on steel fibre bond characteristics in reactive powder concrete", Cement Concrete Res., 34(7), 1167-1172. https://doi.org/10.1016/j.cemconres.2003.12.023.
  22. Chang, P.K. (2004), "An approach to optimizing mix design for properties of high-performance concrete", Cement Concrete Res., 34(4), 623-629. https://doi.org/10.1016/j.cemconres.2003.10.010.
  23. Christopher, C.G., Pachaivannan, P. and Elamparithi, P.N. (2023), "Study on self-compacting polyester fiber reinforced concrete and strength prediction using ANN", Adv. Concrete Constr., 15(2), 85-96. https://doi.org/10.12989/acc.2023.15.2.085.
  24. Collepardi, M.M. (1996), "Water reducers/retarders", Concrete Admixtures Handbook, Elsevier, Park Ridge, NJ, USA.
  25. Collivignarelli, M.C., Abba, A., Miino, M.C., Cillari, G. and Ricciardi, P. (2021), "A review on alternative binders, admixtures and water for the production of sustainable concrete", J. Clean. Prod., 295, 126408. https://doi.org/10.1016/j.jclepro.2021.126408.
  26. Costa, R., Cardoso, T., Degen, M., Silvestro, L., Rodriguez, E. and Kirchheim, A.P. (2023), "Influence of retarder admixtures on the hydration, rheology, and compressive strength of white Portland cements under different temperatures", Cement, 11, 100057. https://doi.org/10.1016/j.cement.2023.100057.
  27. Dadmand, B., Pourbaba, M., Sadaghian, H. and Mirmiran, A. (2020), "Effectiveness of steel fibers in ultra-high-performance fiber-reinforced concrete construction", Adv. Concrete Constr., 10(3), 195-209. https://doi.org/10.12989/acc.2020.10.3.195.
  28. de Larrard, F. and Sedran, T. (2002), "Mixture proportioning of high performance concrete", Cement Concrete Res., 32(11), 1699-1704. https://doi.org/10.1016/S0008-8846(02)00861-X.
  29. Djebien, R., Bouabaz, A., Abbas, Y. and Ziada, Y.N. (2023), "A review on the effect of marble waste on properties of green concrete", Adv. Concrete Constr., 15(1), 63-74. https://doi.org/10.12989/acc.2023.15.1.063.
  30. Farris, R.J. (1968), "Prediction of the viscosity of multimodal suspensions from unimodal viscosity data", Trans. Soc. Rheol., 12, 281-301. https://doi.org/10.1122/1.549109.
  31. Gelardi, G., Mantellato, S., Marchon, D., Palacios, M., Eberhardt, A.B. and Flatt, R.J. (2016), "9 - Chemistry of chemical admixtures", Science and Technology of Concrete Admixtures, Woodhead Publishing, Sawston, Cambridge, UK.
  32. Ghanim, A.A.J., Amin, M., Zeyad, A.M., Tayeh, B.A., Agwa, I.S. and Elsakhawy, Y. (2023), " Effect of polypropylene and glass fiber on properties of lightweight concrete exposed to high temperature", Adv. Concrete Constr., 15(3), 179-190. https://doi.org/10.12989/acc.2023.15.3.179.
  33. Gopinathan, S., Munshi, S., Sophia, M. and Raja, M.A. (2022), "Development of gypsum composite with enhanced mechanical and durable performance using chemical admixture and zeolite", Mater. Today: Proc., 6, 5640-5647. https://doi.org/10.1016/j.matpr.2022.04.924.
  34. Graybeal, B. (2014), "Ultra-high-performance concrete connections for precast concrete bridge decks", PCI J., 49(4), 48-62. https://doi.org/10.15554/pcij.09012014.48.62.
  35. Hornung, F., Schwenk Zementwerke, K.G. and Ulm, E. (1991), "The use of the brabender viscocorder to study the consistency of fresh mortar by two-point tests", Rheology of Fresh Cement and Concrete, CRC Press, Boca Raton, FL, USA.
  36. Huang, G., Pudasainee, D., Gupta, R. and Liu, W.V. (2020), "Utilization and performance evaluation of molasses as a retarder and plasticizer for calcium sulfoaluminate cement-based mortar", Constr. Build. Mater., 243, 118201. https://doi.org/10.1016/j.conbuildmat.2020.118201.
  37. Ivanova, I. and Mechtcherine, V. (2020), "Effects of volume fraction and surface area of aggregates on the static yield stress and structural build-up of fresh concrete", Mater. (Basel), 13(7), 1551. https://doi.org/10.3390/ma13071551.
  38. Jianxia, S. (2012), "6.14 - durability design of concrete hydropower structures", Comprehensive Renewable Energy, Elsevier, Amsterdam, The Netherlands.
  39. Ji, G., Peng, X., Wang, S., Hu, C., Ran, P., Sun, K. and Zeng, L. (2021) "Influence of magnesium slag as a mineral admixture on the performance of concrete", Constr. Build. Mater., 295, 123619. https://doi.org/10.1016/j.conbuildmat.2021.123619.
  40. Kang, S.T. (2020), "The use of river sand for fine aggregate in UHPC and the effect of its particle size", Adv. Concrete Constr., 10(5), 431-441. https://doi.org/10.12989/acc.2020.10.5.431.
  41. Khaloo, A.R. and Kim, N. (1996), "Mechanical properties of normal to high-strength steel fiber-reinforced concrete", Cement Concrete Aggr., 18(2), 92-97. https://doi.org/10.1016/j.conbuildmat.2004.04.027.
  42. Khan, M.U., Ahmad, S., Al-Osta, M.A., Algadhib, A.H. and Al-Gahtani, H.J. (2023), "Effect of fiber content on the performance of UHPC slabs under impact loading - experimental and analytical investigation", Adv. Concrete Constr., 15(3), 161-170. https://doi.org/10.12989/acc.2023.15.3.161.
  43. Khudhair, M.H., El Youbi, M.S. and Elharfi, A. (2018), "Data on effect of a reducer of water and retarder of setting time admixtures of cement pastes and mortar in hardened stat", Data Br., 18, 454-462. https://doi.org/10.1016/j.dib.2018.03.050.
  44. Kontoni, D.P.N., Jahangiri, B., Dalvand, A. and Shokri-Rad, M. (2023), "Effect of length and content of steel fibers on the flexural and impact performance of self-compacting cementitious composite panels", Adv. Concrete Constr., 15(1), 23-39. https://doi.org/10.12989/acc.2023.15.1.023.
  45. Kurda, R., Salih, A., Shakor, P., Saleh, P., Alyousef, R., Ahmed, H. and Aslani, F. (2022), "Mix design of concrete: Advanced particle packing model by developing and combining multiple frameworks", Constr. Build. Mater., 320, 126218. https://doi.org/10.1016/j.conbuildmat.2021.126218.
  46. Lai, G., Liu, X., Li, S., Xu, Y., Zheng, Y., Guan, J., Gao, R., Wei, Z., Wang, Z. and Cui, S. (2023), "Development of chemical admixtures for green and environmentally friendly concrete: A review", J. Clean. Prod., 389, 136116. https://doi.org/10.1016/j.jclepro.2023.136116.
  47. Lande, I. and Thorstensen, R.T. (2023), "Comprehensive sustainability strategy for the emerging ultra-high-performance concrete (UHPC) industry", Clean. Mater., 8, 100183. https://doi.org/10.1016/j.clema.2023.100183.
  48. Lee, Y., Seo, S., You, I., Yun, T.S. and Zi, G. (2023), "Prediction of calcium leaching resistance of fly ash blended cement composites using artificial neural network", Comput. Concrete, 31(4), 315-325. https://doi.org/10.12989/cac.2023.31.4.315.
  49. Li, Z. (2015), "Rheological model and rheometer of fresh concrete", J. Struct. Constr. Eng., 80(710), 527-537. https://doi.org/10.3130/aijs.80.527.
  50. Ma, J. and Schneider, H. (2002), "Properties of ultra-high performance concrete", Leipzig Annual Civil Engineering Report (LACER) No. 7, 25-32; Leipzig University, Leipzig, Germany.
  51. Massarweh, O., Maslehuddin, M., Al-Dulaijan, S.U., Shameem, M. and Ahmad, S. (2020), "Development of a concrete set retarder utilizing electric arc furnace dust", Constr. Build. Mater., 255, 119378. https://doi.org/10.1016/j.conbuildmat.2020.119378.
  52. Matte, V. and Moranville, M. (1999), "Durability of reactive powder composites: Influence of silica fume on leaching properties of very low water/binder pastes", Cement Concrete Res., 21(1), 1-9. https://doi.org/10.1016/S0958-9465(98)00025-0.
  53. Mehta, P.K. and Aiticn, P.C. (1990), "Principles underlying production of high-performance concrete", Cement Concrete Aggr. (ASTM), 12(2), 70-78. https://doi.org/10.1520/CCA10274J.
  54. Metha, P.K. and Monteiro, P.J.M. (2006), Concrete; Microstructure, Properties and Materials, 3rd Edition, McGraw-Hill, New York, NY, USA.
  55. Mohamed, A.Y., Canpolat, O. and Al-Mashhadani, M.M. (2023), "Mechanical and durability of geopolymer concrete containing fibers and recycled aggregate", Comput. Concrete, 30(6), 421-432. https://doi.org/10.12989/cac.2022.30.6.421.
  56. Montgomery, D.C. (2005), Design and Analysis of Experiments, Wiley, New York, NY, USA.
  57. Okamura, H. and Ozawa, K. (1995), "Mix-design for self-compacting concrete", Concrete Library of JSCE, 25, 107-120.
  58. Murad, Y.Z. and Abdel-Jabar, H. (2022), "Flexural behavior of RC beams made with basalt and polypropylene fibers: Experimental and numerical study", Comput. Concrete, 30(3), 165-173. https://doi.org/10.12989/cac.2022.30.3.165.
  59. Nazeer, M., Kapoor, K. and Singh, S.P. (2023), "Strength, durability and microstructural investigations on pervious concrete made with fly ash and silica fume as supplementary cementitious materials", J. Build. Eng., 69, 106275. https://doi.org/10.1016/j.jobe.2023.106275.
  60. Pan, J., Feng, K., Wang, P., Chen, H. and Yang, W. (2022), "Retardation and compressive strength enhancement effect of upcycling waste carrot as bio-admixture for cement mortars", J. Build. Eng., 62, 105402. https://doi.org/10.1016/j.jobe.2022.105402.
  61. Pang, X., Boontheung, P. and Boul, P.J. (2014), "Dynamic retarder exchange as a trigger for Portland cement hydration", Cement Concrete Res., 63, 20-28. https://doi.org/10.1016/j.cemconres.2014.04.007.
  62. Parande, A.K. (2013), "Role of ingredients for high strength and high performance concrete - A review", Adv. Concrete Constr., 1(2), 151-162. https://doi.org/10.12989/acc.2013.1.2.151.
  63. Park, S.H., Dong, J.K., Gum, S.R. and Kyung, T.K. (2012), "Tensile behavior of ultra high performance hybrid fiber reinforced concrete", Cement Concrete Compos., 34, 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009.
  64. Ramachandran, V.S., Lowery, M.S., Wise, T. and Polomark, G.M. (1993), "The role of phosphonates in the hydration of Portland cement", Mater. Struct., 26, 425-432. https://doi.org/10.1007/BF02472943
  65. Reiner, M. and Rens, K. (2006), "High-volume fly ash concrete: Analysis and application", Pract. Period. Struct., 11(1), 58-64. https://doi.org/10.1061/(ASCE)1084-0680(2006)11:1(58).
  66. Richard, P. and Cheyrezy, M. (1995), "Composition of reactive powder concretes", Cement Concrete Res., 25, 1501-1511. https://doi.org/10.1016/0008-8846(95)00144-2.
  67. Roy, D.M. and Asaga, K. (1979), "The effect of mixing procedures on viscometric properties of mixes containing superplasticizers", Cement Concrete Res., 9, 731-739. https://doi.org/10.1016/0008-8846(79)90068-1.
  68. Roy, R.K. (1990), A Primer on the Taguchi Method, Competitive Manufacturing Series, Van Nostrand Reinhold, New York, NY, USA.
  69. Schowalter, W.R. (1978), Mechanics of Non-Newtonian Fluids, Pergamon Press, New York, NY, USA.
  70. Shafigh, P., Yousuf, S., Alsubari, B. and Ibrahim, Z. (2023), "Effect of curing on alkalinity and strength of cement-mortar incorporating palm oil fuel ash", Adv. Concrete Constr., 15(3), 191-202. https://doi.org/10.12989/acc.2023.15.3.191.
  71. Shao, L., Feng, P., Zuo, W., Wang, H., Geng, Z., Liu, Q., Miao, C. and Liu, Z. (2022), "A novel method for improving the printability of cement-based materials: Controlling the releasing of capsules containing chemical admixtures", Cement Concrete Compos., 128, 104456. https://doi.org/10.1016/j.cemconcomp.2022.104456.
  72. Sharma, R. and Bansal, P.P. (2019), "Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete", Adv. Concrete Constr., 8(1), 21-31. https://doi.org/10.12989/acc.2019.8.1.021.
  73. Shemirani, A.B. (2022), "Experimental and numerical studies of concrete bridge decks using ultra high-performance concrete and reinforced concrete", Comput. Concrete, 29(6), 407-418. https://doi.org/10.12989/cac.2022.29.6.407.
  74. Shen, P., Lu, J.X., Zheng, H., Liu, S. and Poon, C.S. (2021), "Conceptual design and performance evaluation of high strength pervious concrete", Constr. Build. Mater., 269, 121342. https://doi.org/10.1016/j.conbuildmat.2020.121342.
  75. Shi, C., Wu, Z., Xiao, J., Wang, D., Huang, Z. and Fang, Z. (2015), "A review on ultra high performance concrete: Part 1. Raw materials and mixture design", Constr. Build. Mater., 101, 741-751. https://doi.org/10.1016/j.conbuildmat.2015.10.088.
  76. Sobolev, K. (2004), "The development of a new method for the proportioning of high-performance concrete mixtures", Cement Concrete Compos., 26, 901-907. https://doi.org/10.1016/j.cemconcomp.2003.09.002.
  77. Somayaji, S. (2001), Civil Engineering Materials, Prentice Hall, Upper Siddle River, NJ, USA.
  78. Sonebi, M., Abdalqader, A., Fayyad, T., Amziane, S. and ElKhatib, J. (2022), "Effect of fly ash and metakaolin on the properties of fiber-reinforced cementitious composites: A factorial design approach", Comput. Concrete, 29(5), 347-360. https://doi.org/10.12989/cac.2022.29.5.347.
  79. Song, P.S. and Hwang, S. (2004), "Mechanical properties of high-strength steel fiber -reinforced concrete", Constr. Build. Mater., 18, 669-673. https://doi.org/10.1016/j.conbuildmat.2004.04.027.
  80. Souza, M.T., Ferreira, I.M., Guzi de Moraes, E., Senff, L. and Novaes de Oliveira, A.P., (2020), "3D printed concrete for large-scale buildings: An overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects", J. Build. Eng., 32, 101833. https://doi.org/10.1016/j.jobe.2020.101833.
  81. Taguchi, G. (1987), Introduction to Quality Engineering: Designing Quality into Products and Processes, Asian Productivity Organization, Tokyo, Japan.
  82. Taheri, B.M. and Ramezanianpour, A.M. (2021), "Optimizing the mix design of pervious concrete based on properties and unit cost", Adv. Concrete Constr., 11(4), 285-298. https://doi.org/10.12989/acc.2021.11.4.285.
  83. Tammam, Y., Uysal, M. and Canpolat, O. (2022), "Durability properties of fly ash-based geopolymer mortars with different quarry waste fillers", Comput. Concrete, 29(5), 335-346. https://doi.org/10.12989/cac.2022.29.5.335.
  84. Tang, C.W. (2010), "Hydration properties of cement pastes containing high-volume mineral admixtures", Comput. Concrete, 7(1), 17-38. https://doi.org/10.12989/cac.2010.7.1.017.
  85. Tang, C.W. (2014), "Producing synthetic lightweight aggregates by treating waste TFT-LCD glass powder and reservoir sediments", Comput. Concrete, 13(3), 325-342. https://doi.org/10.12989/cac.2014.13.3.325.
  86. Tang, C.W. (2021), "Mix design and early-age mechanical properties of ultra-high performance concrete", Adv. Concrete Constr., 11(4), 335-345. https://doi.org/10.12989/acc.2021.11.4.335.
  87. Tang, C.W., Cheng, C.K. and Ean, L.W. (2022), "Mix design and engineering properties of fiber-reinforced pervious concrete using lightweight aggregates", Appl. Sci., 12, 524. https://doi.org/10.3390/app12010524.
  88. Tang, C.W., Cheng, C.K. and Tsai, C.Y. (2019), "Mix design and mechanical properties of high-performance pervious concrete", Mater., 12(16), 2577. https://doi.org/10.3390/ma12162577.
  89. Tang, C.W., Yen, T., Chang, C.S. and Chen, K.H. (2001), "Optimizing mixture proportions for flowable high performance concrete via rheology tests", ACI Mater. J., 98(6), 493-502. https://doi.org/10.14359/10852.
  90. Tangadagi, R.B., Maddikeari, M., Seth, D. and Shailaja, P. (2021), "Role of mineral admixtures on strength and durability of high strength self compacting concrete: An experimental study", Mater., 18, 101144. https://doi.org/10.1016/j.mtla.2021.101144.
  91. Tong, S., Yuqi, Z. and Qiang, W. (2021), "Recent advances in chemical admixtures for improving the workability of alkali-activated slag-based material systems", Constr. Build. Mater., 272, 121647. https://doi.org/10.1016/j.conbuildmat.2020.121647.
  92. Topcu, I.B., Unverdi, A. and Yildirim, V. (2022), "Statistical analysis of the influences of admixtures and elevated temperatures on mortar properties", Comput. Concrete, 29(3), 169-186. https://doi.org/10.12989/cac.2022.29.3.169.
  93. Tran, D.L., Mouret, M., Cassagnabere, F. and Tri Phung, Q. (2022), "Effects of intrinsic granular porosity and mineral admixtures on durability and transport properties of recycled aggregate concretes", Mater. Today Commun., 33, 104709. https://doi.org/10.1016/j.mtcomm.2022.104709.
  94. Ukraincik, V. (1980), "Study on fresh concrete flow curve", Cement Concrete Res., 10, 203-212. https://doi.org/10.1016/0008-8846(80)90077-0.
  95. Wang, T., Ishida, T., Gu, R. and Luan, Y. (2021), "Experimental investigation of pozzolanic reaction and curing temperature-dependence of low-calcium fly ash in cement system and Ca-SiAl element distribution of fly ash-blended cement paste", Constr. Build. Mater., 267, 121012. https://doi.org/10.1016/j.conbuildmat.2020.121012.
  96. Wang, Y.S., Alrefaei, Y. and Dai, J.G. (2020), "Influence of coal fly ash on the early performance enhancement and formation mechanisms of silicoaluminophosphate geopolymer", Cement Concrete Res., 127, 105932. https://doi.org/10.1016/j.cemconres.2019.105932.
  97. Wille, K., Naaman, A. and Montesinos, G. (2011), "Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): A simpler way", ACI Mater. J., 108(1), 46-54.
  98. Wu, C. and Kou, S. (2019), "Effects of high-calcium sepiolite on the rheological behaviour and mechanical strength of cement pastes and mortars", Constr. Build. Mater., 196, 105-114. https://doi.org/10.1016/j.conbuildmat.2018.11.130.
  99. Wu, J. H., Pu, X. C., Liu, F. and Wang, C. (2006), "High Performance Concrete with High Volume Fly Ash", Key Eng. Mater., 302-303, 470-478. https://doi.org/10.4028/www.scientific.net/KEM.302-303.470.
  100. Wu, L.S., Yu, Z.H., Zhang, C. and Bangi, T. (2022), "Mechanical properties and assessment of a hybrid ultra-high-performance engineered cementitious composite using calcium carbonate whiskers and polyethylene fibers", Comput. Concrete, 30(5), 339-355. https://doi.org/10.12989/cac.2022.30.5.339.
  101. Xi, X., Sun, L., Shi, Q., Tian, F. and Guo, B. (2023), "Effects of mineral admixture on properties of cement-based foam material developed for preventing coal spontaneous combustion", Fuel, 342, 127785. https://doi.org/10.1016/j.fuel.2023.127785.
  102. Xing, F., Huang, D., Cao, L. and Deng, L. (2006), "Study on preparation technique for low-cost green reactive powder concrete", Key Eng. Mater., 302-303, 405-410. https://doi.org/10.4028/www.scientific.net/KEM.302-303.405.
  103. Yazici, H., Yardimci, M.Y., Yigiter, H., Aydin, S. and Turkel, S. (2010), "Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace Slag", Cement Concrete Compos., 32(8), 639-648. https://doi.org/10.1016/j.cemconcomp.2010.07.005.
  104. Yen, T., Tang, C.W., Chang, C.S. and Chen, K.H. (1999), "Flow behavior of high strength high-performance concrete", Cement Concrete Compos., 21, 413-424. https://doi.org/10.1016/S0958-9465(99)00026-8.
  105. Yoon, H.N., Seo, J., Kim, N., Son, H.M. and Lee, H.K. (2023), "Physicochemical properties and autogenous healing performance of ternary blended binders composed of OPCBFS-CSA clinker", Adv. Concrete Constr., 15(1), 11-22. https://doi.org/10.12989/acc.2023.15.1.011.
  106. Yousuf, S., Sanchez, L. and Shammeh, S. (2019), "The use of particle packing models (PPMs) to design structural low cement concrete as an alternative for construction industry", J. Build. Eng., 25, 100815. https://doi.org/10.1016/j.jobe.2019.100815.
  107. Yuan, Y., Zhang, W., Sun, G., Wang, Y., Wu, F. and Zhang, Y. (2023), "Study on the effect of mineral admixture on the water stability of UHPC under long-term immersion", Constr. Build. Mater., 380, 131276. https://doi.org/10.1016/j.conbuildmat.2023.131276.
  108. Zhang, H., Mu, S., Cai, J., Liu, J. and Hong, J. (2023), "The role of iron in cement hydration process: From perspective of chemical admixture", Thermochim. Acta, 722, 179457. https://doi.org/10.1016/j.tca.2023.179457.
  109. Zhang, Q., Feng, Y., Cheng, Z., Jiao, Y., Cheng, H., Wang, J. and Qi, J. (2022), "Large-scale testing and numerical study on an innovative dovetail UHPC joint subjected to negative moment", Comput. Concrete, 30(3), 175-183. https://doi.org/10.12989/cac.2022.30.3.175.
  110. Zhou, M., Wu, Z., Ouyang, X., Hu, X. and Shi, C. (2021), "Mixture design methods for ultra-highperformance concrete - a review", Cement Concrete Compos., 124, 104242. https://doi.org/10.1016/j.cemconcomp.2021.104242.
  111. Zhou, Y. and Zhang, Z. (2021), "Effect of fineness on the pozzolanic reaction kinetics of slag in composite binders: Experiment and modelling", Constr. Build. Mater., 273, 121695. https://doi.org/10.1016/j.conbuildmat.2020.121695.
  112. Zhuang, Wang, S.Q. and Luo, T. (2023), "Modification of ultrafine blast furnace slag with steel slag as a novel high-quality mineral admixture to prepare", J. Build. Eng., 71, 106501. https://doi.org/10.1016/j.jobe.2023.106501.