• Title/Summary/Keyword: Dosage strength

Search Result 223, Processing Time 0.021 seconds

Behavior of PCC During Loading at High Consistency Pulp Slurry (고농도 펄프 슬러리 충전에서 PCC의 거동)

  • Cho, Byoung-Uk;Won, Jong-Myoung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.5
    • /
    • pp.43-48
    • /
    • 2011
  • Filler loading at thick stock was carried out in order to verify if the dual addition of filler can be used as a means to reduce the detrimental effects of filler on the strength properties of paper. PCC was added to 3.5% pulp slurry blended with HwBKP, BCTMP and SwBKP. Cationic starch was used as a fixing agent. The mixture of PCC and pulp was stirred for 5, 10 and 20min. at 1,000 rpm. The remaining PCC was washed out before handsheet making. PCC particles were flocculated and fixed on the pulp fiber and/or space between fibers. It is expected that the flocculation and inclusion of PCC can be helpful to improve the strength properties of paper due to the reduction of detrimental effect in fiber bonding. The distinct tendency in PCC flocculation and fixing on pulp fiber was not observed by the change of cationic starch dosage and treatment time.

Durability of self compacted concrete containing slag in hot climate

  • Yahiaoui, Walid;Kenai, Said;Menadi, Belkacem;Kadri, El-Hadj
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.271-288
    • /
    • 2017
  • This paper aims to investigate the effects of replacing cement with ground granulated blast furnace slag (GGBFS) in self compacting concrete in the fresh and hardened state. The performance of SCC in moderate climate is well investigated but few studies are available on the effect of hot environment. In this paper, the effect of initial water-curing period and curing conditions on the performance of SCC is reported. Cement was substituted by GGBFS by weight at two different levels of substitution (15% and 25%). Concrete specimens were stored either in a standard environment (T=$20^{\circ}C$, RH=100%) or in the open air in North Africa during the summer period (T=35 to $40^{\circ}C$; R.H=50 to 60%) after an initial humid curing period of 0, 3, 7 or 28 days. Compressive strength at 28 and 90 days, capillary absorption, sorptivity, water permeability, porosity and chloride ion penetration were investigated. The results show that the viscosity and yield stress are decreased with increasing dosage of GGBFS. The importance of humid curing in hot climates in particular when GGBFS is used is also proved. The substitution of cement by GGBFS improves SCC durability at long term. The best performances were observed in concrete specimens with 25% GGBFS and for 28 days water curing.

Effects of compatibility between PNS Superplasticzer and soluble alkali of cements on performances of concrete (PNS계 고성능 감수제와 시멘트 수용성 알칼리양과의 상용성이 콘크리트 물성에 미치는 영향)

  • Ahn, Tae-ho;Park, Junhui;Sho, Kwangho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.4
    • /
    • pp.173-177
    • /
    • 2017
  • A polynaphthalenesulfonate (PNS) superplasticizer and its relation to the fluidity of cement paste (w/c = 0.35) has been investigated for three cements at a given dosage of PNS superplasticizer. Chemical properties of three cements were characterized with a XRD, XRF. The additive effects of $Na_2SO_4$ on the fresh concrete with w/c = 0.33 were also estimated by the measurement of compressive strength, slump, air content. The experimental results exhibited that the addition of sodium sulfate 2.6 % to the cement A and C improves slump loss. In case of cement E, the addition of sodium sulfate 1.3 % was effective.

Effects of E-beam treatment on the interfacial and mechanical properties of henequen/polypropylene composites

  • Cho, Dong-Hwan;Lee, Hyun-Seok;Han, Seong-Ok;Drzal, Lawrence T.
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.315-334
    • /
    • 2007
  • In the present study, chopped henequen natural fibers without and with surface modification by electron beam (E-beam) treatment were incorporated into a polypropylene matrix. Prior to composite fabrication, a bundle of raw henequen fibers were treated at various E-beam intensities from 10 kGy to 500 kGy. The effect of E-beam intensity on the interfacial, mechanical and thermal properties of randomly oriented henequen/polypropylene composites with the fiber contents of 40 vol% was investigated focusing on the interfacial shear strength, flexural and tensile properties, dynamic mechanical properties, thermal stability, and fracture behavior. Each characteristic of the material strongly depended on the E-beam intensity irradiated, showing an increasing or decreasing effect. The present study demonstrates that henequen fiber surfaces can be modified successfully with an appropriate dosage of electron beam and use of a low E-beam intensity of 10 kGy results in the improvement of the interfacial properties, flexural properties, tensile properties, dynamic mechanical properties and thermal stability of henequen/polypropylene composites.

Effects of PCC Loading at Thick Stock on the Paper Properties (고농도 지료에서의 PCC 충전이 종이 물성에 미치는 영향)

  • Won, Jong-Myoung;Cho, Byoung-Uk;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.62-68
    • /
    • 2012
  • This study was carried out to evaluate the effect of PCC loading at thick stock on the physical properties of paper. The effect of starch addition(2, 4 and 6%) and mixing time(5, 10 and 20 min.) on the filler retention and paper properties were investigated. Optimum dosage of cationic starch as a fixing agent was 4%, and mixing time did not showed any significant effect on the filler retention. PCC loading at thick stock was more effective to improve bulk and opacity than PCC loading at thin stock, although their improvement was not so significant. It was also found that the strength properties could be improved by the loading at thick stock. PCC loading method at thick stock could be considered as one of potential approaches for further improving of paper properties, although further research works are required in order to apply the PCC loading at thick stock in the paper mill.

Effect of curing temperature on the properties of ground granulated blast furnace slag-cement bentonite slurry

  • Kim, Taeyeon;Lee, Bongjik;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.237-247
    • /
    • 2022
  • To investigate the curing temperature effect on the engineering properties of ground granulated blast furnace slag-cement bentonite (GGBS-CB) slurry for cutoff walls, the laboratory experiments including the setting time, unconfined compressive strength, and permeability tests were carried out. The mixing procedure for GGBS-CB slurry was as follows: (1) montmorillonite-based bentonite slurry was first fabricated and hydrated for four hours, and (2) cement or GGBS with cement was added to the bentonite slurry. The dosage range of GGBS was from 0 to 90 % of cement by mass fraction. The GGBS-CB slurry specimens were cured and stored in environmental chamber at temperature of 14±1, 21±1, 28±1℃ and humidity of 95±2% until target days. The highest average temperature of three seasons in South Korea was selected and used for the tests. The experimental results indicated that in early age (less than 28 days) of curing the engineering properties of GGBS-CB slurry were primarily affected by the curing temperature, whereas the replacement ratio of GGBS became a main factor to determine the properties of the slurry as the curing time increased.

Optimization of mineral admixtures and retarding admixture for high-performance concrete by the Taguchi method

  • Chao-Wei Tang
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.185-206
    • /
    • 2023
  • This article aimed to explore the optimization of mineral admixtures and retarding admixture for high-performance concrete. In essence, fresh concrete can be regarded as a mixture in which both coarse and fine aggregates are suspended in a cement-based matrix paste. Based on this view, the test procedure was divided into three progressive stages of binder paste, mortar, and concrete to explore their rheological behavior and mechanical properties respectively. At each stage, there were four experimental control factors, and each factor had three levels. In order to reduce the workload of the experiment, the Taguchi method with an L9(34) orthogonal array and four controllable three-level factors was adopted. The test results show that the use of the Taguchi method effectively optimized the composition of high-performance concrete. The slump of the prepared concrete was above 18 cm, and the slump flow was above 50 cm, indicating that it had good workability. On the other hand, the 28-day compressive strength of the hardened concretes was between 31.3-59.8 MPa. Furthermore, the analysis of variance (ANOVA) results showed that the most significant factor affecting the initial setting time of the fresh concretes was the retarder dosage, and its contribution percentage was 62.66%. On the other hand, the ANOVA results show that the most significant factor affecting the 28-day compressive strength of the hardened concretes was the water to binder ratio, and its contribution percentage was 79.05%.

Effect of rubber particles on properties and frost resistance of self-compacting concrete

  • Miao Liu;Jianhua Xiao;En Yang;Lijuan Su
    • Advances in concrete construction
    • /
    • v.16 no.5
    • /
    • pp.269-276
    • /
    • 2023
  • In order to study the effect of rubber particle size and admixture on the frost resistance of self-compacting concrete, three self-compacting concrete specimens with equal volume replacement of fine aggregate by rubber particles of different particle sizes were prepared, while conventional self-compacting concrete was made as a comparison specimen. The degradation law of rubber aggregate self-compacted concrete under freeze-thaw cycles was investigated by fast-freezing method test. The results show that the rubber aggregate has some influence on the mechanical properties and freeze-thaw durability of the self-compacting concrete. With the increase of rubber aggregate, the compressive strength of self-compacting concrete gradually decreases, and the smaller the rubber aggregate particle size is, the smaller the effect on the compressive strength of the matrix; rubber aggregate can improve the frost resistance of self-compacting concrete, and the smaller the rubber particle size is, the more obvious the effect on the improvement of the frost resistance of the matrix under the same dosage. Through the research of this paper, it is recommended to use 60~80 purpose rubber aggregate and the substitution rate of 10% is chosen as the best effect.

Treatment of Cu-EDTA by using Photocatalytic Oxidation Process - Comparison between UV Lamp and Solar Light - (광산화 공정을 이용한 Cu-EDTA 처리 - 인공 자외선램프와 태양광의 처리경향 비교 -)

  • Shin, In-Soo;Choi, Bong-Jong;Lee, Seung-Mok;Yang, Jae-Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.66-72
    • /
    • 2005
  • Effect of the pH, molar ratio of Cu(II)/EDTA, concentration of Cu(II)-EDTA and ionic strength on the photocatalytic oxidation(PCO) of Cu(II)-EDTA in solar light was studied in this work. Experimental results in this work were compared with previous results obtained with UV-lamp. In the kinetics, Cu(II)-EDTA decomposition was favorable below neutral pH. The removal of Cu(II) and DOC was favorable as $TiO_2$ dosage increased. The initial rate for the decomplexation of Cu(II)-EDTA linearly increased as the concentration of Cu(II)-EDTA increased. The removal of Cu(II) and DOC was not much affected by variation of ionic strength with $NaClO_4$ as a background ion while much reduction was observed in the presence of background ions having higher formal charges. The removal trend of Cu(II) and DOC with variation of ionic strength and concentration of Cu(II)-EDTA in solar light was similar with that in UV light. Variation of the molar ratio of Cu(II)/EDTA showed a negligible effect on the removal of both Cu(II) and DOC. However, removal of both Cu(II) and DOC was two-times greater than that previous results obtained with UV light.

A Study on the Mechanical Properties of Grout Materials Using a Magnetic Field Treated Water (자화수를 사용한 주입재의 역학적 특성에 관한 연구)

  • Chun, Byung-Sik;Yang, Hyung-Chil;Lee, Sang-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.65-72
    • /
    • 2006
  • This study is about the estimation of the mechanical properties of cement grout material using a magnetic field treated water instead of tap water. The water that passed through a magnetic system is called MFTW. Similar research indicates that 5% of cement dosage can be saved by decreasing bleeding of concrete and improving resistance to freezing. The reason why MFTW can improve characteristics of concrete can be explained by molecular structure of water. Magnetic force makes water clusters into single molecule or small ones. Hence, the activity of water is improved by the magnetic force. While hydration of cement particles is on progress, the MFTW can penetrate the core region of cement particles more easily. Therefore, the hydration can be carried out more efficiently and the compression strength of concrete is highly improved. The sample of the sodium silicate cement grout's homogel using the MFTW results in highly compressive strength increases in compressive strength approximately from 20% to 50%.