• Title/Summary/Keyword: Dorsal horn

Search Result 142, Processing Time 0.034 seconds

Calcium Modulates Excitatory Amino Acid (EAA)- and Substance P-induced Rat Dorsal Horn Cell Responses

  • Shin, Hong-Kee;Kang, Sok-Han;Chung, In-Duk;Kim, Kee-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.1
    • /
    • pp.35-45
    • /
    • 1999
  • Excitatory amino acid (EAA) and substance P (SP) have been known to be primary candidates for nociceptive neurotransmitter in the spinal cord, and calcium ions are implicated in processing of the sensory informations mediated by EAA and SP in the spinal cord. In this study, we examined how $Ca^{2+}$ modified the responses of dorsal horn neurons to single or combined iontophoretical application of EAA and SP in the rat. All the LT cells tested responded to kainate, whereas about 55% of low threshold (LT) cells responded to iontophoretically applied NMDA. NMDA and kainate excited almost all wide dynamic range (WDR) cells. These NMDA- and kainate-induced WDR cell responses were augmented by iontophoretically applied EGTA, but suppressed by $Ca^{2+},\;Mn^{2+},$ verapamil and ${\omega}-conotoxin$ EVTA, effect of verapamil being more prominent and well sustained. $Ca^{2+}$ and $Mn^{2+}$ antagonized the augmenting effect of EGTA. On the other hand, prolonged spinal application of EGTA suppressed the response of WDR cell to NMDA. SP had triple effects on the spontaneous activity as well as NMDA-induced responses of WDR cells: excitation, inhibition and no change. EGTA augmented, but $Ca^{2+},\;Mn^{2+}$ and verapamil suppressed the increase in the NMDA-induced responses and spontaneous activities of WDR cells following iontophoretical application of SP. These results suggest that in the spinal cord, sensory informations mediated by single or combined action of EAA and SP can be modified by the change in calcium ion concentration.

  • PDF

Responses of Dorsal Horn Neurons to Peripheral Chemical Stimulation in the Spinal Cord of Anesthetized Cats

  • Jung, Sung-Jun;Park, Joo-Min;Lee, Joon-Ho;Lee, Ji-Hye;Eun, Su-Yong;Kim, Sang-Jeong;Lim, Won-Il;Cho, Sun-Hee;Kim, Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.1
    • /
    • pp.15-24
    • /
    • 2000
  • Although nociceptive informations are thought to be processed via different neural mechanisms depending on the types of stimuli, sufficient data have not been accumulated yet. We performed a series of experiments to elucidate the possible neural mechanisms as to chemical stimuli such as formalin, capsaicin and ATP. Single unit activity of wide dynamic range (WDR) neurons and high threshold cells were recorded extracellularly from the lumbosacral enlargement of cat spinal cord before and after chemical stimulation to its receptive field (RF). Each chemical substance - formalin $(20{\mu}l,\;4%),$ capsaicin (33 mM) or Mg-ATP (5 mM)- was injected intradermally into the RFs and then the changes in the spontaneous activity, mechanical threshold and responses to the peripheral mechanical stimuli were observed. In many cases, intradermal injection of formalin (5/11) and capsaicin (8/11) resulted in increase of the spontaneous activity with a biphasic pattern, whereas ATP (8/8) only showed initial responses. Time courses of the biphasic pattern, especially the late response, differed between formalin and capsaicin experiments. One hour after injection of each chemical (formalin, capsaicin, or ATP), the responses of the dorsal horn neurons to mechanical stimuli increased at large and the RFs were expended, suggesting development of hypersensitization (formalin 6/10, capsaicin 8/11, and ATP 15/19, respectively). These results are suggested that formalin stimulates peripheral nociceptor, local inflammation and involvement of central sensitization, capsaicin induces central sensitization as well as affects the peripheral C-polymodal nociceptors and neurogenic inflammation, and ATP directly stimulates peripheral nociceptors.

  • PDF

Effects of Somatostatin on the Responses of Rostrally Projecting Spinal Dorsal Horn Neurons to Noxious Stimuli in Cats

  • Jung, Sung-Jun;Jo, Su-Hyun;Lee, Sang-Hyuck;Oh, Eun-Hui;Kim, Min-Seok;Nam, Woo-Dong;Oh, Seog-Bae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.5
    • /
    • pp.253-258
    • /
    • 2008
  • Somatostatin (SOM) is a widely distributed peptide in the central nervous system and exerts a variety of hormonal and neural actions. Although SOM is assumed to play an important role in spinal nociceptive processing, its exact function remains unclear. In fact, earlier pharmacological studies have provided results that support either a facilitatory or inhibitory role for SOM in nociception. In the current study, the effects of SOM were investigated using anesthetized cats. Specifically, the responses of rostrally projecting spinal dorsal horn neurons (RPSDH neurons) to different kinds of noxious stimuli (i.e., heat, mechanical and cold stimuli) and to the $A{\delta}$ -and C-fiber activation of the sciatic nerve were studied. Iontophoretically applied SOM suppressed the responses of RPSDH neurons to noxious heat and mechanical stimuli as well as to C-fiber activation. Conversely, it enhanced these responses to noxious cold stimulus and $A{\delta}$-fiber activation. In addition, SOM suppressed glutamate-evoked activities of RPSDH neurons. The effects of SOM were blocked by the SOM receptor antagonist cyclo-SOM. These findings suggest that SOM has a dual effect on the activities of RPSDH neurons; that is, facilitation and inhibition, depending on the modality of pain signaled through them and its action site.

The Involvement of Protein kinase C in Glutamate-Mediated Nociceptive Response at the Spinal Cord of Rats (흰쥐의 척수에서 Glutamate가 매개하는 Nociceptive Response에 있어서 Protein kinase C의 관련성)

  • 김성정;박전희;이영욱;양성준;이종은;이병천;손의동;허인회
    • YAKHAK HOEJI
    • /
    • v.43 no.2
    • /
    • pp.263-273
    • /
    • 1999
  • When glutamate was infected intrathecally, the result is similar to those produced by TPA injected. The involvement of protein kinase C (PKC) in the nociceptive responses in rat dorsal horn neurons of lumbar spinal cord was studied. In test with formalin, a PKC inhibitor (chelerythrine) inhibited dose-dependently the formalin-induced behavior response. Neomycin also inhibited it significantly. But, a PKC activator (12-O-tetradecanoylphorbol-13-ester, TPA) showed reverse effect. When gluatamate was injected intrathecally, we observed the result is smilar to those produced by TPA injection. On the other hand, intrathecal injection of glutamate induced thermal and mechanical hyperalgesia. In Tail-flick test, we examined the involvement of PKC on the glutamate-indeced thermal hyperalgesia. Chelerythrine showed an inhibitory effect and TPA enhanced thermal response. Glutamate decreased the mechanical threshold significantly. A pretreatment of chelerythrine and neomycin inhibited glutamate-induced mechanical hyperalgesia, but the effect of neomycin was not significant. TPA had little effect on the mechanical nociceptive response. These results suggest that the PKC activation through metabotropic receptor at postsynaptic region of spinal cord dorsal horn neurons may influence on the persistent nociception produced by chemical stimulation with formalin, thermal and mechanical hyperalgesia induced by glutamate.

  • PDF

First Record of an Abnormal Bathyraja brachyurops (Rajiformes: Arhynchobatidae) Collected from the Southwest Atlantic Ocean (남서대서양에서 채집된 Bathyraja brachyurops (Rajiformes: Arhynchobatidae) 기형의 첫 보고)

  • Min-Gyoon Park;Eunjung Kim;Jin-Koo Kim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.916-922
    • /
    • 2023
  • An abnormal shape of Bathyraja brachyurops was first reported from the catch of a bottom trawl in the southwest Atlantic Ocean in June 2022. Both pectoral fins of the specimen did not fuse with the head, resulting in a horn-like structure separated from the sides of the eyes. Analysis of mitochondrial DNA cytochrome c oxidase subunit I sequences showed that our specimen was perfectly matched to Bathyraja brachyurops registered with the National Center for Biotechnology Information. Our specimen possessed the following morphological features: a pair of flexible but elongated and pointed horns on the head; rough dorsal disc, densely covered with numerous small denticles on the head, anterior margin of pectoral fins and median line of the disc; a thorn between the first and second dorsal fins; and a pair of large ocelli at the base of pectoral fins. Unlike the normal B. brachyurops, our specimen had a slender clasper and no nuchal thorns, which may be related to the morphological abnormality. The horn-like structure on the head may be owing to the lack of fusion between the pectoral fins and head during early embryonic development.

Distribution of Neurons in the Lateral Reticular Nucleus Projecting to Cervical, Thoracic, and Lumbar Segments , of the Spinal Cord in the Rat

  • Lee, Hyun Sook
    • Animal cells and systems
    • /
    • v.4 no.4
    • /
    • pp.353-359
    • /
    • 2000
  • Location of the neurons in the lateral reticular nucleus projecting to dorsal horn of the cervical, thoracic, or lumbar spinal cord was investigated in the rat using the technique of retrograde transport of horseradish peroxidase. The projection was bilateral with ipsilateral predominance. Neurons projecting to the cervical spinal cord were located near the medial, dorsal, and lateral perimeter of the magnocellular division of the lateral reticular nucleus, whereas cells projecting to the thoracic and lumbar spinal cord were localized in the medial and dorsal boundaries of the magnocellular division. The labeled neurons were distinctly multipolar in shape and measured approximately 10-15 $\mu m$ in their greatest transverse diameter. A few neurons were also observed in the subtrigeminal nucleus, whereas few cells were in the parbocellular division. These observations provide an anatomical substrate for the functional implication of the lateral reticular nucleus in the regulation of spinal nociceptive transmission and vascular hemodynamics via the descending pathway into the spinal cord.

  • PDF

Effects of Root of Cibotii Rhizoma on Neuronal Damage of Spinal Cord Contusion Injury in Rats (구척(狗脊)이 흰쥐의 척수압박에 의한 신경세포 손상에 미치는 영향)

  • Park, Won-Sang;Kim, Eun-Seok;Shin, Jung-Won;Kim, Bum-Hoi;Kim, Seong-Joon;Kang, Hee;Sohn, Nak-Won
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.20 no.2
    • /
    • pp.1-15
    • /
    • 2010
  • Objectives : This study was performed to evaluate the effects of root of Cibotii rhizoma(CR) ethanol extract on the tissue and neuronal damage of the spinal cord injury(SCI). Methods : SCI was induced by mechanical contusion following laminectomy of 10th thoracic vertebra in Sprague-Dawley rats. CR was orally given once a day for 7 days after SCI. Tissue damage and nerve fiber degeneration were examined with cresyl violet and luxol fast blue(LFS) histochemistry. HSP72(as neuronal damage marker), MAP2(as nerve fiber degeneration marker), c-Fos(immediate early gene), and Bax(pro-apoptotic molecule) expressions were examined using immuno-histochemistry. Individual immuno-positive cells expressing HSP72, MAP2, c-Fos and Bax were observed on the damaged level and the upper thoracic and lower lumbar spinal segments. Results : 1. CR reduced degeneration of nerve fibers and motor neuron shrinkage in the ventral horn of the lower lumbar spinal segment, but generally it did not seem to ameliorate the tissue injury following SCI. 2. CR reduced demyelination in the ventral and lateral funiculus of the lower lumbar spinal segment. 3. CR reduced HSP72 expression on the neurons in the peri-central canal gray matter adjacent to the damaged region. 4. CR strengthened MAP2 expression on the motor neurons in the ventral horn and on nerve fibers in the lateral funiculus of the lower lumbar spinal segment. 5. CR reduced c-Fos positive cells in the peri-lesion and the dorsal horn of the damaged level and in the ventral horn of the lower lumbar spinal segment. 6. CR reduced Bax positive cells in the peri-lesion and the dorsal horn of the damaged level and in the ventral horn of the lower lumbar spinal segment. Conclusions : These results suggest that CR plays an inhibitory role against secondary neuronal damage and nerve fiber degeneration. following SCI.

The Effects of Herba Chelidonii Extracts on Calcitonin Gene-Related Peptide and Substance P Immunoreactive Response in Spinal Cord and Ganglia of Adjuvant-Induced Arthritis (관절염 모델에서 백굴채전탕액이 척수와 척수신경절의 Calcitonin Gene-Related Peptide와 Substance P 면역반응에 미치는 영향)

  • Park Jong Joo;Yook Tae Han;Song Beem Yong;Lee Kwang Gyu;Yu Yun Jo;Lee Chang Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.272-278
    • /
    • 2002
  • To investigate the anti-inflammatory and analgesic effects of Herba Chelidoniie, the extracts of Herba Chelidoniie treated in arthritic rat model. Complete Freund,s Adjuvant(CFA) were injected in the subcutaneous tissue of left foot paw of rats to induce arthritis. Herba Chelidonii extracts(HC) was administered immediately into the peritoneal cavity after CFA injection for 12 days. The immunohistochemical stainings for calcitonin gene-related peptide(CGRP) and substance P in the L4, L5 and L6 spinal dorsal horn and ganglia were done, and the paw swelling was measured with a micrometer and the blood leukocytes were counted. The results were as follows : The paw swelling of HC treated group was significantly decreased in 12th day after CFA injection compare to control group. The change of differential leukocytes counts of HC treated group increased the ratio of lymphocytes, and decreased the ratio of neutrophils compare to control group. The extent of CGRP immunoreactive nerve fiber of dorsal horn of HC treated group was weakly stained compare to control group. The number of CGRP immunoreactive neurons of L6 spinal cord of HC treated group was significantly decreased compare to control group. The extent of substance P immunoreactive nerve fiber of dorsal horn of He treated group was weakly stained compare to control group. The number of substance P immunoreactive neurons of L4, L5 and L6 spinal cord of HC treated group was significantly decreased compare to control group. These experimental results suggest that Herba Chelidonii extracts reduce the number of CGRP and substance P immunoreactive neurons and nerve fibers of spinal dorsal horns and ganglia, and decrease paw swelling in arthritic rat model, which may be closely related to analgesic and antiinflammatory effects of Herba Chelidonii.

Sensory Inputs to Upper Cervical Spinal Neurons Projecting to Midbrain in Cats

  • Kim, Jong-Ho;Jeong, Han-Seong;Park, Jong-Seong;Kim, Jong-Keun;Park, Sah-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.9-19
    • /
    • 1998
  • The present study was primarily carried out to characterize the properties of the spinomesencephalic tract (SMT) neurons that project from the upper cervical spinal segments to the midbrain. It was also investigated whether these neurons received convergent afferent inputs from other sources in addition to cervical inputs. Extracellular single unit recordings were made from neurons antidromically activated by stimulation of midbrain. Recording sites were located in lamina $I{\sim}VIII\;of\;C1{\sim}C3$ segments of spinal cord. Receptive field (RF) and response properties to mechanical stimulation were studied in 71 SMT neurons. Response profiles were classified into six groups: complex (Comp, n=9), wide dynamic range (WDR, n=16), low threshold (LT, n=5), high threshold (HT, n=6), deep/tap (Deep, n=10), and non- responsive (NR, n=25). Distributions of stimulation and recording sites were not significantly different between SMT groups classified upon their locations and/or response profiles. Mean conduction velocity of SMT neurons was $16.7{\pm}1.28\;m/sec$. Conduction velocities of SMTs recorded in superficial dorsal horn (SDH, n=15) were significantly slower than those of SMTs recorded in deep dorsal horn (DDH, n=18), lateral reticulated area (LRA, n=21), and intermediate zone and ventral horn (IZ/VH, n=15). Somatic RFs for SMTs in LRA and IZ/VH were significantly larger than those in SDH and DDH. Five SMT units (4 Comps and 1 HT) had inhibitory somatic RFs. About half (25/46) of SMT units have their RFs over trigeminal dermatome. Excitabilities of 5/12 cells and 9/13 cells were modulated by stimulation of ipsilateral phrenic nerve and vagus nerve, respectively. These results suggest that upper cervical SMT neurons are heterogenous in their function by showing a wide range of variety in location within the spinal gray matter, in response profile, and in convergent afferent input.

  • PDF

The Role of Somatostatin in Nociceptive Processing of the Spinal Cord in Anesthetized Cats

  • Jung, Sung-Jun;Park, Joo-Min;Lee, Jun-Ho;Lee, Ji-Hye;Kim, Sang-Jeong;Kim, Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.4
    • /
    • pp.365-373
    • /
    • 1999
  • Somatostatin (SOM) is one of the major neuropeptides in dorsal root ganglion cells, but its role in spinal nociceptive process has not been well known. In present study we aimed to investigate the effect of SOM on the response of dorsal horn neurons to the various types of peripheral nociceptive stimuli in anesthetized cats. Using carbon-filament microelectrode, the single cell activities of wide dynamic range neurons were recorded from the lumbosacral enlargement after noxious mechanical (squeeze), thermal (radiant heat lamp) and cold (dry ice) stimulation to the receptive field. Sciatic nerve was stimulated electrically to evoke $A\;{\delta}-$ and C-nociceptive responses. SOM analogue, octreotide $(10\;{\mu}g/kg),$ was applied intravenously and the results were compared with those of morphine (2 mg/kg, MOR). Systemic SOM decreased the cellular responses to the noxious heat and the mechanical stimulation, but increased those to the cold stimulation. In the responses to the electric stimuli of sciatic nerve, $A\;{\delta}-nociceptive$ response was increased by SOM, while C-nociceptive response was decreased. On the other hand, MOR inhibited the dorsal horn cell responses to all the noxious stimuli. From the above results, it is concluded that SOM suppresses the transmission of nociceptive heat and mechanical stimuli, especially via C-fiber, while it facilitates those of nociceptive cold stimuli via $A\;{\delta}-fiber$.

  • PDF