• Title/Summary/Keyword: Dorema

Search Result 2, Processing Time 0.019 seconds

Ethnomedicinal Uses, Phytochemistry and Pharmacology of Dorema Species (Apiaceae): A Review

  • Zibaee, Elaheh;Amiri, Mohammad Sadegh;Boghrati, Zahra;Farhadi, Faeghe;Ramezani, Mahin;Emami, Seyed Ahmad;Sahebkar, Amirhossein
    • Journal of Pharmacopuncture
    • /
    • v.23 no.3
    • /
    • pp.91-123
    • /
    • 2020
  • The application of antique medical instructions, practices, skills and knowledge has been considered as the most affordable treatment in many developing countries. The use of these preparations and prescriptions over generations has made a useful and valuable guide for drug discovery in modern medicine. Medical herbs have been of a high importance for this purpose. The genus Dorema, of Apiaceae family (Umbelliferae) has a wide use in ethnobotany and traditional medicine around the world. It has been used as a treatment for CNS disease, convulsion, upper respiratory tract problems, gastrointestinal disorder and high blood sugar. Furthermore, phytochemical investigations have reported Dorema species to contain a wide range of constituents including terpenes, coumarins and phenolic compounds. The current review summarizes comprehensive information regarding botany, phytochemistry and pharmacological aspects of Dorema spp.

Induction of Apoptosis and Cell Cycle Arrest by Dorema Glabrum Root Extracts in a Gastric Adenocarcinoma (AGS) Cell Line

  • Jafari, Naser;Zargar, Seyed Jalal;Yassa, Narguess;Delnavazi, Mohammad Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.12
    • /
    • pp.5189-5193
    • /
    • 2016
  • Objective: Dorema glabrum Fisch. & C.A. Mey is a perennial plant that has several curative properties. Anti-proliferative activity of seeds of this plant has been demonstrated in a mouse fibrosarcoma cell line. The aim of the present study was to evaluate cytotoxicity of D. glabrum root extracts in a human gastric adenocarcinoma (AGS) cell line and explore mechanisms of apoptosis induction, cell cycle arrest and altered gene expression in cancer cells. Materials and Methods: The MTT assay was used to evaluate IC50 values, EB/AO staining to analyze the mode of cell death, and flow cytometry to assess the cell cycle. Quantitative real-time polymerase chain reaction (qRT-PCR) amplification was performed with apoptosis and cell cycle-related gene primers, for cyclin D1, c-myc, survivin, VEGF, Bcl-2, Bax, and caspase-3 to determine alteration of gene expression. Results: Our results showed that n-hexane and chloroform extracts had greatest toxic effects on gastric cancer cells with IC50 values of $6.4{\mu}g/ml$ and $4.6{\mu}g/ml$, respectively, after 72 h. Cell cycle analysis revealed that the population of treated cells in the G1 phase was increased in comparison to controls. Cellular morphological changes indicated induction of apoptosis. In addition, mRNA expression levels of Bax and caspase-3 were increased, and of bcl-2 survivin, VEGF, c-myc and cyclin D1 were decreased. Conclusion: Our study results suggest that D. glabrum has cytotoxic effects on AGS cells, characterized by enhanced apoptosis, reduced cell viability and arrest of cell cycling.