• Title/Summary/Keyword: Doppler Radar Sensor

Search Result 35, Processing Time 0.028 seconds

Design and Implementation of a Microwave Motion Detector with Low Power Consumption

  • Sohn, Surg-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.7
    • /
    • pp.57-64
    • /
    • 2015
  • In this paper, we propose a design of microwave motion detector using X-band doppler radar sensor to minimize the power consumption. To minimize the power consumption and implement battery operated system, pulse input with 2 KHz, 4% duty cycle is exerted on the doppler radar sensor. In order to simplify the process of working with ATmega2560 microcontroller unit, Arduino compatible board is designed and implemented. Arduino is open source hardware and many library software is published as open source tools. Smartphone app is also proposed and designed as a real-time user interface of the motion detector. The SQLite database on the Android mobile operating system is used for recording raw data of motion detection for post-processing job, such as fast Fourier transform (FFT). Bluetooth interface module is implemented on the motion detection board as a wireless communication interface to the smartphone. The speed of human movement is identified by post-processing FFT.

A Precise Location Tracking System with Smart Context-Awareness Based-on Doppler Radar Sensors (스마트한 상황인지를 적용한 도플러 레이더 센서 기반의 정밀 위치추정 시스템)

  • Moon, Seung-Jin;Kim, Hong-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1159-1166
    • /
    • 2010
  • Today, detecting the location of moving object has been traced as various methods in our world. In this paper, we preset the system to improve the estimation accuracy utilizing detail localization using radar sensor based on WSN and situational awareness for a calibration (context aware) database, Rail concept. A variety of existing location tracking method has a problem with receiving of data and accuracy as tracking methodology, and since these located data are the only data to be collected for location tracing, the context aware or monitering as the surrounding environment is limited. So, in this paper, we enhanced the distance aware accuracy using radar sensor utilizing the Doppler effect among the distance measuring method, estimated the location using the Triangulation algorithm. Also, since we composed the environment data(temperature, illuminancem, humidity, noise) to entry of the database, it can be utilized in location-based service according to the later action information inference and positive context decision. In order to verify the validity of the suggested method, we give a few random situation and built test bed of designed node, and over the various test we proved the utilizing the context information through route tracking of moving and data processing.

A Study on Simulation of Doppler Spectra in a Current Velocity Radar (유속 레이다에서의 도플러 스펙트럼 모의구현에 관한 연구)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2101-2107
    • /
    • 2012
  • A current velocity measurement radar for a river or a stream estimates Doppler frequencies of return echoes to extract the corresponding surface velocity information. It is very important to maintain the reliability and accuracy of these velocity estimates for water resource management such as flooding or drought conditions. However, received Doppler spectra of water surface return echoes have very widely varying shapes according to different measurement environments and weather conditions. Therefore, serious problems may arise in maintaining the reliability and accuracy of velocity estimating algorithm in a radar sensor because of Doppler spectra which can have many different kind of shapes. Therefore, in this paper, an appropriate Doppler spectrum model is suggested to simulate many various Doppler spectra. This model can be very useful in validating the reliability and accuracy of surface velocity estimates.

A Study on Estimation of Doppler Frequency in a Current Velocity Measurement Radar (유속 측정 레이다에서의 도플러 주파수 추정에 관한 연구)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1551-1557
    • /
    • 2013
  • A current velocity measurement radar estimates Doppler frequencies to extract the corresponding surface velocity information. Therefore, it is required to maintain the high degree of reliability and accuracy of Doppler frequency estimates. However, Doppler spectra of water surface return echoes can have very widely varying shapes according to measurement environments and weather conditions. Therefore, serious problems may arise in maintaining the reliability and accuracy of conventional velocity estimating algorithm in a radar sensor. Therefore, in this paper, a newly suggested algorithm is proposed for improvement using estimation of peak Doppler frequencies. The proposed method shows that the more accurate velocity measurement can be possible comparing with the conventional one.

Ocean Surface Current Retrieval Using Doppler Centroid of ERS-1 Raw SAR Data

  • Kim Ji-Eun;Kim Duk-jin;Moon Wooil M.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.590-593
    • /
    • 2004
  • Extraction of ocean surface current velocity offers important physical oceanographic parameters especially on understanding ocean environment. Although Remote Sensing techniques were highly developed, the investigation of ocean surface current using Synthetic Aperture Radar (SAR) is not an easy task. This paper presents the results of ocean surface current observation using Doppler Centroid of ERS-1 SAR data obtained off the coast of Korea peninsula. We employed the concept, in which Doppler frequency shift and the ocean surface current are closely related, to evaluate ocean surface current. Moving targets cause Doppler frequency shift of the back scattered radar waves of SAR, thus the line-of-sight velocity component of the scatters can be evaluated. The Doppler frequency shift can be measured by estimating the difference between Doppler Centroid of raw SAR data and reference Doppler Centroid. Theoretically, the Doppler Centroid is zero; however, squinted antenna which is affected by several physical factors causes Doppler Centroid to be nonzero. The reference Doppler Centroid can be obtained from measurements of sensor trajectory, attitude and Earth model. The estimated Doppler Centroid was compensated by considering the accurate attitude estimation of ERS-1 SAR. We could verify the correspondence between the estimated ocean surface current and observed in-situ data in the error bound.

  • PDF

Target Path Detection Algorithm Using Activation Time Lag of PDR Sensors Based on USN (USN기반 PDR 센서의 검출 시간차를 이용한 표적 경로 검출 알고리즘)

  • Lee, Jaeil;Lee, Chong Hyun;Bae, Jinho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.179-186
    • /
    • 2015
  • This paper proposes the target path detection algorithm using statistical characteristics of an activated time lag along a moving path of target from a neighboring sensor in PDR(Pulse Doppler Radar) sensor node environment based on USN(Ubiquitous Sensor Network) with a limitation detecting only an existence of moving target. In the proposed algorithm, detection and non-detection time lag obtained from the experimental data are used. The experimental data are through repetitive action of each 500 times about three path scenarios such as passing in between two sensors, moving parallel to two sensors, and turning through two sensors. From this experiments, error detection percentages of three path scenarios are 5.67%, 5.83%, and 7.17%, respectively. They show that the proposed algorithm can exactly detect a target path using the limited PDR sensor nodes.

Pulse Doppler Radar Signal Processor Development for Main Battle Tank Using High Speed Multi-DSP (고속 Multi-DSP를 이용한 전차 탑재 펄스 도플러 레이더 신호 처리기 개발)

  • Park, Gyu-Churl;Ha, Jong-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1171-1177
    • /
    • 2009
  • A missile warning radar is an essential sensor for active protection system to detect antitank missile in all weather environments. This paper introduces missile warning radar for main battle tank and presents the results of the design and implementation of the radar signal processor using high speed multi-DSP. The key algorithms include adaptive CF AR, weighted linear fitting algorithm, S/W tracking capability, and threat decision and present test result.

A Multicopter Detecting and Combating Wild Animals Using a Microwave Doppler sensor (마이크로 도플러 센서를 이용한 유해조수 퇴치드론)

  • Lee, Seul;Kim, Jun-tae;Cho, Soon-jae;Cho, Beom-yeon;Jeong, Seo-hoon;Kim, Hyung-Hoon;Shim, Hyeon-min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.34-37
    • /
    • 2019
  • The drone uses a Microwave Doppler Radar Sensor which operates at 10.525GHz to recognize harmful animal which intruded into the arable land. Moreover provide user with notification services on risk factors. Subsequently, the user the drone's camera and a camera-only app to watch the farmland in real-time, steer the drone directly, and use the NeoPixel LED ring and the speaker to stimulate the harmful animal's sight and hearing to induce escape.

Bed Side Monitoring System using Occupancy Sensor and Doppler Radar (Occupancy 센서와 도플러 Radar를 이용한 침상 모니터링 시스템)

  • Kang, Byung Wuk;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.3
    • /
    • pp.382-390
    • /
    • 2018
  • A major accident occurring on the bed is falls that occur during at times when the care of nurses or protectors is inadequate, which is fatal to patients or the elderly. In particular, Enuresis or sleepiness caused by sleep apnea increases the risk of falls. Therefore, it is very important to detect falls and sleep apnea of patients without infringing privacy in the bed to patient's safety and accident prevention. In this paper, we reviewed the technologies developed for bed monitoring and implemented a non-intrusive monitoring system. The Occupancy Sensor allows the temperature of the bed and surrounding area to be extracted to enable track of the patient's motion. The Doppler Radar detects the patient's movements at normal times and the respiration state when patients have no movement during sleeping. It is specially designed for real-time monitoring of falling and respiration during sleeping through contactless multi-sensing while solving patient's privacy problems.

Extraction of Ocean Surface Current Velocity Using Envisat ASAR Raw Data (Envisat ASAR 원시자료를 이용한 표층 해류 속도 추출)

  • Kang, Ki-Mook;Kim, Duk-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.11-20
    • /
    • 2013
  • Space-borne Synthetic Aperture Radar(SAR) has been one of the most effective tools for monitoring quantitative oceanographic physical parameters. The Doppler information recorded in single-channel SAR raw data can be useful in estimating moving velocity of water mass in ocean. The Doppler shift is caused by the relative motion between SAR sensor and the water mass of ocean surface. Thus, the moving velocity can be extracted by measuring the Doppler anomaly between extracted Doppler centroid and predicted Doppler centroid. The predicted Doppler centroid, defined as the Doppler centroid assuming that the target is not moving, is calculated based on the geometric parameters of a satellite, such as the satellite's orbit, look angle, and attitude with regard to the rotating Earth. While the estimated Doppler shift, corresponding to the actual Doppler centroid in the situation of real SAR data acquisition, can be extracted directly from raw SAR signal data, which usually calculated by applying the Average Cross Correlation Coefficient(ACCC). The moving velocity was further refined to obtain ocean surface current by subtracting the phase velocity of Bragg-resonant capillary waves. These methods were applied to Envisat ASAR raw data acquired in the East Sea, and the extracted ocean surface currents were compared with the current measured by HF-radar.