• Title/Summary/Keyword: Dopamine Model

Search Result 71, Processing Time 0.022 seconds

Neuroprotective Effects of Herbal Ethanol Extracts from Gynostemma pentaphyllum on L-DOPA Therapy in 6-hydroxydopamine-lesioned Rat Model of Parkinson's Disease (돌외 에탄올 추출물 엑스가 6-hydroxydopamine-유도 파킨슨병 백서 모델에서의 L-DOPA 요법에 미치는 영향)

  • Suh, Kwang-Hoon;Choi, Hyun-Sook;Shin, Keon-Seong;Hwang, Bang-Yeon;Lee, Myung-Koo
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.4
    • /
    • pp.341-347
    • /
    • 2011
  • The neuroprotective effects of herbal ethanol extracts from Gynostemma pentaphyllum (GP-EX) in 6-hydroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease treated with L-DOPA were investigated. Rats were prepared for the Parkinson's disease model by 6-OHDA-lesioning for 14 days. The rats were then treated with L-DOPA (10 and 20 mg/kg) with or without the oral administration of GP-EX (30 mg/kg, daily) for 28 days. L-DOPA (20 mg/kg) treatment for 28 days enhanced dopaminergic neuronal cell death in 6-OHDA-lesioned rat groups, but L-DOPA (10 mg/kg) did not. However, the oral administration of GP-EX (30 mg/kg) for 28 days ameliorated the enhanced neurotoxic effects induced by chronic L-DOPA treatment in 6-OHDA-lesioned rat groups by increasing tyrosine hydroxylase (TH)-immunohistochemical staining and the number of TH-immunopositive cells surviving in the substantia nigra. In addition, GP-EX administration (30 mg/kg) for 28 days recovered the levels of dopamine and norepinephrine of the striatum in 6-OHDA-lesioned rat groups, which were markedly reduced by L-DOPA treatment (20 mg/kg). GP-EX (30 mg/kg) did not produce any signs of toxicity, such as weight loss, diarrhea, or vomiting in rats during the 28-day treatment period. These results suggest that GP-EX has protective functions against chronic L-DOPA-induced neurotoxic reactions in dopaminergic neurons in the 6-OHDA-lesioned rat model of Parkinson's disease. Therefore, GP-EX may be beneficial in the prevention of adverse symptoms in parkisonian patients.

Neuroprotective Effect of l-Deprenyl Against 6-OHDA-Induced Dopamine Depletion in Rat Striatum and 6-OHDA-Induced Oxidative Stress in SH-SY5Y Cells (흰쥐 선조체에서 6-OHDA-유도 도파민 고갈 및 SH-SY5Y 세포주에서 6-OHDA-유도 산화적 스트레스에 대한 l-Deprenyl의 신경 보호효과)

  • Kim Eun-Mi;Choi Sinkyu;Lee Kyunglim;Kim Hwa-Jung
    • YAKHAK HOEJI
    • /
    • v.49 no.4
    • /
    • pp.355-364
    • /
    • 2005
  • A neurotoxin, 6-hydroxydopamine (6-OHDA) has long been used to form a Parkinson's disease (PD) model by inducing the lesion in catecholaminergic pathways, particularly the nigrostriatal dopamine (DA) pathway. Whereas l-deprenyl, a selective inhibitor of monoamine oxidase (MAO) type B, is now widely used in the treatment of PD, the precise action mechanism of the drug remains elusive. In this study, we investigated whether l-deprenyl shows protective effect against the DA depletion induced by 6-OHDA in rat brain, and against 6-OHDA-induced neurotoxicity and oxidative stress in catecholaminergic neuroblastoma SH-SY5Y cells that are known to lack MAO-B activity. Pretreatment of l-deprenyl significantly enhanced the striatal DA, 3,4-dihydroxyphenylacetic acid, homovanilic acid, and 3-methoxytyramine levels compared to the untreated 6-OHDA-lesioned rat, indicating that l-deprenyl pretreatment prevents 6-OHDA-induced depletion of not only striatal dopamine but also its metabolites. Treatment of 6-OHDA for 24hrs decreased the cell viability and increase the generation of ROS in dose-dependent manners. We further investigated whether caspase activity is involved in the action of l-deprenyl. Treatment of l-deprenyl $(0.1\~100{\mu}M)$ did not produce any changes in 6-OHDA-induced cleavage of poly (ADP-ridose) polymerase in SH-SY5Y cells. Our results suggest that the neuroprotective effect of l-deprenyl against 6-OHDA is due to its increased scavenger activity, but independent of inhibition of MAO-B or caspase-3 activation.

Impact of High Fat Diet-induced Obesity on the Plasma Levels of Monoamine Neurotransmitters in C57BL/6 Mice

  • Kim, Minjeong;Bae, SeungJin;Lim, Kyung-Min
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.476-480
    • /
    • 2013
  • Obesity is one of the most serious health problems in developed countries. It negatively affects diverse aspects of human wellbeing. Of these, a relationship between obesity and depression is widely recognized but biomarkers for assessment of obesity-associated mood changes in animal obesity models are rarely known. Here we explored the link between obesity and the plasma levels of monoamine neurotransmitters involved in mood control using a sensitive UPLC/MSMS technique in high fat diet (HFD)-induced obesity model in male C57BL/6 mice to explore the potential utility of plasma tests for obesity-associated mood change. HFD (60% of total calories, 8 weeks) induced significantly higher weight gains in body (+37.8%) and fat tissue (+306%) in male C57BL/6 mice. Bioanalysis of serotonin, dopamine and norepinephrine in plasma at 8 weeks of HFD revealed that serotonin decreased significantly in the obese mice when compared to normal diet-fed mice ($2.7{\pm}0.6$ vs $4.3{\pm}2.0ng/ml$, N=8). Notably, a negative correlation was found between the levels of serotonin and body weight gains. Furthermore, principal component analysis (PCA) with the individual levels of neurotransmitters revealed that plasma levels of dopamine and serotonin could apparently differentiate the obese mice from lean ones. Our study demonstrated that blood plasma levels of neurotransmitters can be employed to evaluate the mood changes associated with obesity and more importantly, provided an important clue for understanding of the relationship between obesity and mood disorders.

The Dopamine D4 Receptor Polymorphism Affects the Canine Fearfulness

  • Lee, Chae-Young;Kim, Chang-Hoon;Shin, Soo-An;Shin, Dae-Sung;Kang, Joo-Hyun;Park, Chan-Kyu
    • Animal cells and systems
    • /
    • v.12 no.2
    • /
    • pp.77-83
    • /
    • 2008
  • The canine fearfulness is a behavioral trait known to have a genetic basis. This research analyzed genetic effects of the dopamine D4 receptor polymorphism on this behavior by postulating a mixed model of inheritance. Genotyping for the three different repeat polymorphism found in the third exon of the receptor gene was carried out for the population of the Korean native dogs. Four hundred fifty eight dogs with known pedigree were genotyped, and 264 individuals were tested for their fear responses to an experimenter, in which four different behavioral paradigms were adopted. Since the results assessed by principal factor analysis revealed a major factor explaining 69% of the total phenotypic variance, the subsequent analyses were conducted for this quantity. Analyses of the factor scores by estimating their posterior means indicated that there is a fixed effect exerted by the three different repeat polymorphism found in the D4 receptor as well as sex, in addition to unidentified polygenic effects. The phenotypic contribution of the D4 genotype was roughly estimated to be about 2%, which is a fraction of the total genetic effects responsible for more than 20% of the total phenotypic variance.

Effects of Opioid Agonists on the Suppressed Spontaneous Alternation Behaviour in Rats (아편양 순응제가 백서의 억제된 자발적 교대행동에 미치는 영향)

  • Lee, Gi-Chul;Jeon, Seong-Il;Chang, Hwan-Il;Lee, Jung-Ho;Choi, Young-Min;Kim, Seong-Ho;Ryu, Jeong-Hwan;Choi, Mi
    • Korean Journal of Biological Psychiatry
    • /
    • v.6 no.2
    • /
    • pp.193-201
    • /
    • 1999
  • This study was designed to evaluate the effects of opioid receptor agonists on the spontaneous alternation behaviour in an animal model of obsessivecompulsive disorder in rats. According to the theory that dopamine is related to the biological etiology of obsessive-compulsive disorder, the effect of the nalbuphine(opioid kappa agonist) and the tramadol(opioid mu agonist), which act as manipulating agents on the inhibition or stimulation of dopamine release, in the spontaneous alternation behaviour were evaluated. 24 hours prior to the experiment, rats were food-deprived. These rats were put into the T-maze, in which white and black goal boxes were baited with small amounts of chocolate milk. Each rat was given 2 set of 7 trials during which it was placed in the start box and allowed to choose the one of the goal boxes for each time. After identifying the stable baseline of spontaneous alternation behaviour, nonselective 5-HT agonist 5-MeODMT(1.25mg/kg/IP) disrupted spontaneous alternation. Rats were stratified into fluoxetine(10mg/kg/IP), nalbuphine(10mg/kg/IP), tramadol(46.4mg/kg/IP), and saline(0.5cc/IP) injection group with experimental drug treatment for 21 days. The effects on the 5-MeODMT(1.25mg/kg/IP) induced disruption of spontaneous alternation behaviour were checked at the next day of discontinuation of drug treatment. The results were as follows ; 1) At the day after 21 days of the drug treatment, the nalbuphine treated group and the fluoxetine treated group showed significant difference from the tramadol treated group and the saline treated group in the 5-MeODMT(1.25mg/kg/IP) induced suppression of spontaneous alternation behaviour. 2) Within each drug treatment group, the fluoxetine treated group showed significant difference between before and after the treatment of fluoxetine in the 5-MeODMT(1.25mg/kg/IP) induced suppression of spontaneous alternation behaviour. And also, the nalbuphine treated group showed significant difference between before and after the treatment of nalbuphine in the 5-MeODMT(1.25mg/kg/IP) induced suppression of spontaneous alternation behaviour. There was no difference between the baseline and after the treatment of nalbuphine in the 5-MeODMT(1.25mg/kg/IP) induced suppression of spontaneous alternation behaviour. We indentified that the opioid kappa agonist that act as dopamine release inhibitor affect the spontaneous alternation behaviour which is an animal model of obsessive-compulsive disorder in rat.

  • PDF

Autophagy-enhancing and neuroprotective effects of Wonji-Gobon mixture (WGM) in a Parkinson's disease mouse model

  • Lee, Jin-Wook;Kwak, Jin-Young;Koh, Young-Mee;Ahn, Taek-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.341-349
    • /
    • 2018
  • The aim of this study was to evaluate autophagy-enhancing and neuroprotective effects of Wonji-Gobon mixture (WGM), a traditional Chinese prescription medication, in Parkinson's disease (PD) mouse models. Our investigation found that WGM increased the expression of both Beclin1 and LC3b-II proteins as measured with western blot in the BV2 cell line; both proteins play a role in autophagy. WGM also increased the autophagy expression as measured by fluorescence-activated cell-sorting analysis in the BV2 cell line. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced PD models, WGM significantly increased the amount of dopamine in a striatum-substantia nigra suspension, produced notable results in the forced swim test, and increased serotonin as measured by high-performance liquid chromatography analysis; these results are indicative of neuroprotective effects. In summary, our findings indicate that WGM treatment has neuroprotective effects that are partially mediated by autophagy enhancement.

Conformational Analysis of Catecholamines-Raman, High Resolution NMR, and Conformational Energy Calculation Study

  • Park Mi-Kyung;Yoo Hee-Soo;Kang Young Kee;Lee Nam-Soo;Ichiro Hanazaki
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.230-235
    • /
    • 1992
  • The conformational analysis has been done for catecholamines (dopamine, norepinephrine, and epinephrine) in the cationic and di-anionic states. The species responsible for adsorption on silver metal surface is anionic deprotonated at hydroxyl groups of catechol moiety, i.e., di-anionic states of catecholamines. This was deduced from Fourier-transform Raman spectra of sodium salts of catecholamines. High resolution proton NMR (400 MHz) spectra of catecholamines in basic and neutral $D_2O$ solution show that the conformations of norepinephrine and epinephrine in the di-anionic states are preferred in gauche, but not for dopamine in the di-anionic state. However the energy difference between trans and gauche of catecholamines in the protonated cationic states is small enough to rotate freely through C-C bond in ethylamine moiety. The conformational calculations using an empirical potential function and the hydration shell model (a program CONBIO) show consistent with above experimental results. The calculations suggest that the species of catecholamines adsorbed on silver metal surface would be in favor of the gauche conformations.

Anxiety and Norepinephrine System (불안과 노어에피네프린)

  • Sim, Hyun-Bo;Yu, Bum-Hee
    • Anxiety and mood
    • /
    • v.2 no.1
    • /
    • pp.3-8
    • /
    • 2006
  • Anxiety has been suggested to be related to many neurotransmitters in brain, such as norepinephrine, serotonin, dopamine, cholecystokinin, and gamma-amino butyric acid. There are many studies to examine the relationship between anxiety and norepinephrine, and norepinephrine seems to be clearly related to the development of anxiety. We suggest that future studies to explore the pathophysiology of anxiety should be necessary, which include studies on antianxiety drugs, genetic studies, animal model studies, and brain imaging studies.

  • PDF

Alteration of Striatal Tetrahydrobiopterin in Iron-Induced Unilateral Model of Parkinson's Disease

  • Aryal, Bijay;Lee, Jin-Koo;Kim, Hak Rim;Kim, Hyung-Gun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.129-134
    • /
    • 2014
  • It has been suggested that transition metal ions such as iron can produce an oxidative injuries to nigrostriatal dopaminergic neurons, like Parkinson's disease (PD) and subsequent compensative increase of tetrahydrobiopterin ($BH_4$) during the disease progression induces the aggravation of dopaminergic neurodegeneration in striatum. It had been established that the direct administration of $BH_4$ into neuron would induce the neuronal toxicity in vitro. To elucidate a role of $BH_4$ in pathogenesis in the PD in vivo, we assessed the changes of dopamine (DA) and $BH_4$ at striatum in unilateral intranigral iron infused PD rat model. The ipsistriatal DA and $BH_4$ levels were significantly increased at 0.5 to 1 d and were continually depleting during 2 to 7 d after intranigral iron infusion. The turnover rate of $BH_4$ was higher than that of DA in early phase. However, the expression level of GTP-cyclohydrolase I mRNA in striatum was steadily increased after iron administration. These results suggest that the accumulation of intranigral iron leads to generation of oxidative stress which damage to dopaminergic neurons and causes increased release of $BH_4$ in the dopaminergic neuron. The degenerating dopaminergic neurons decrease the synthesis and release of both $BH_4$ and DA in vivo that are relevance to the progression of PD. Based on these data, we propose that the increase of $BH_4$ can deteriorate the disease progression in early phase of PD, and the inhibition of $BH_4$ increase could be a strategy for PD treatment.

Effects of Olanzapine on the Schedule-Induced Polydipsic Rats (Olanzapine이 백서의 Schedule-Induced Polydipsia에 미치는 영향)

  • Lee, Gi-Chul;Lee, Kyung-Kyu;Chang, Hwan-Il;Lee, Jung-Ho;Kim, Hyun-Woo;Ha, Jun-Myung;Jeong, Jae-Hyun;Jeong, Hong-Kyung
    • Korean Journal of Biological Psychiatry
    • /
    • v.6 no.2
    • /
    • pp.240-245
    • /
    • 1999
  • Object : This study was designed to evaluate the effects of olanzapine on the schedule-induced polydipsia(SIP) which is one of animal model of obsessive-compulsive disorder in rats. We administered olanzapine as a serotonin and dopamine blocking agent, fluoxetine as a selective serotonin reuptake inhibitor, and haloperidol for the dopamine antagonist to rats which showed schedule-induced polydipsic behavior. Methods : Spraque-Dawley rats weighing 200-250gm were individually housed and maintained and allowed free access to water. The rats were placed on a restricted diet. To induce polydipsia, rats were placed in the cage where a pellet dispenser automatically dispensed 90mg pellets on a fixed-time 60 seconds(FT-60s) feeding schedule over 150 minute test session per day. Water was available at all times in the cage. After 4 weeks of daily exposure to the FT 60s feeding schedule, experimental rats met a predetermined criterion for polydipsic behavior(greater than 3 times of water per session on average). 5 groups of rats were administered olanzapine(3mg/kg, i.p), olanzapine(10mg/kg, i.p), fluoxetine(5mg/kg, i.p.), haloperidol(0.1mg/kg, i.p.), and vehicle(1cc/kg, i.p.) for 3 weeks. The rats were tested once a week to access schedule induced polydipsic behavior. Water bottles were weighed before and after the 150-minute test session. The chronic effects of administration of experimental drugs on schedule induced polydipsic behavior were analyzed with ANOVA and Scheffe test as a posthoc comparison. In order to measure water consumption in non-polydipsic food-deprived rats, a separate group of rats(N=8) were individually housed and given a single bolus(14.5gm) of food per day which maintained them at their average body weight. Results and Conclusion : The results were as follows ; 1) After 4 weeks of scheduled feeding procedure, the experimental group showed significant differences than the bolus control in the amount of water consumption as compared with their average water intakes for 4 weeks. At the same periods, there were no differences between the experimental group and the bolus control in the body weight. 2) The fluoxetine group showed significant decrease in the amount of water intake over the 3 weeks of drug treatment as compared with their average amount of polydipsic water intakes. The olanzapine 3mg group showed significant decrease in the amount of water intake at 3rd weeks of drug treatment as compared with their average amount of polydipsic water intakes. The olanzapine 10mg group showed significant decrease in the amount of water intake at 2nd and 3rd weeks of drug treatment as compared with their average amount of polydipsic water intakes. However, the haloperidol group and the vehicle control group showed no changes of amounts of water intake for 3 weeks of treatment as compared with their average amount of polydipsic water intakes. 3) The fluoxetine group showed significantly lower amounts of water intake than the haloperidol group at 2nd weeks of drug treatment. And also the fluoxetine group showed significantly lower amounts of water intake than the haloperidol group and the vehicle control at 3rd weeks of drug treatment. The olanzapine 3mg group and the olanzapine 10mg group showed significantly lower amounts of water intake than the haloperidol group and the vehicle control at 3rd weeks of drug treatment. Above findings suggest that the fixed time feeding procedure for schedule-induced polydipsia as an animal model of obsessive compulsive disorder was effective to the evaluation of pharmacological challenge study. The authors assume that the serotonin hypothesis and the serotonin-dopamine interaction hypothesis are preferred to the dopamine hypothesis in the biological etiology of obsessive-compulsive disorder.

  • PDF