• Title/Summary/Keyword: Donor cell stage

Search Result 93, Processing Time 0.021 seconds

Porcine somatic cell nuclear transfer using telomerase reverse transcriptase-transfected mesenchymal stem cells reduces apoptosis induced by replicative senescence

  • Jeon, Ryounghoon;Rho, Gyu-Jin
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.215-222
    • /
    • 2020
  • Mesenchymal stem cells (MSCs) have been widely used as donor cells for somatic cell nuclear transfer (SCNT) to increase the efficiency of embryo cloning. Since replicative senescence reduces the efficiency of embryo cloning in MSCs during in vitro expansion, transfection of telomerase reverse transcriptase (TERT) into MSCs has been used to suppress the replicative senescence. Here, TERT-transfected MSCs in comparison with early passage MSCs (eMSCs) and sham-transfected MSCs (sMSCs) were used to evaluate the effects of embryo cloning with SCNT in a porcine model. Cloned embryos from tMSC, eMSC, and sMSC groups were indistinguishable in their fusion rate, cleavage rate, total cell number, and gene expression levels of OCT4, SOX2 and NANOG during the blastocyst stage. The blastocyst formation rates of tMSC and sMSC groups were comparable but significantly lower than that of the eMSC group (p < 0.05). In contrast, tMSC and eMSC groups demonstrated significantly reduced apoptotic incidence (p < 0.05), and decreased BAX but increased BCL2 expression in the blastocyst stage compared to the sMSC group (p < 0.05). Therefore, MSCs transfected with telomerase reverse transcriptase do not affect the overall development of the cloned embryos in porcine SCNT, but enables to maintain embryo quality, similar to apoptotic events in SCNT embryos typically achieved by an early passage MSC. This finding offers a bioengineering strategy in improving the porcine cloned embryo quality.

Effect of lonomycin and 6-Dimethylaminopurine on Oocyte Activation and Production of Rabbit Nuclear Transplant Embryos (Ionomycin과 6-Dimethylaminopurine이 토끼의 난자 활성화와 핵이식배 생산효율에 미치는 영향)

  • 하란조;강다원;최창용;윤희준;강태영;최상용;이효종;박충생
    • Journal of Embryo Transfer
    • /
    • v.13 no.1
    • /
    • pp.11-19
    • /
    • 1998
  • This study was to determine the effect of ionomycin and 6-dimethylaminopurine (6-DMAP) and/or elcetrical stimulation on the oocyte activation and production of rabbit nuclear transplant embryos. The oocytes were collected from the oviduct of superovulated rabbits at 14 h post hCG injection and cultured in TCM-199 containing 10% FBS until 19 h post hCG injection. To determine the optimum concentration and exposure time of 6-DMAP, some oocytes were activated with 5 $\mu$M ionomycin for 5 min and then in 2.0 mM 6-DMAP for 0.5 to 3.0 h, or in 1.0 to 3.0 mM 6-DMAP for 2.0 h. Other control oocytes were stimulated electrically(3X, 1.25 kV/cm, 60 $\mu$sec) in 0.3 M mannitol solution supplemented with 100 $\mu$M CaCl$_2$ and MgCl$_2$. The nuclear donor embryos of 8-cell stage were synchronized to G$_1$ phase of 16-cell stage, and the recipient cytoplasms were obtained from removal of the first polar body and a portion of membrane bound cytoplasm of the oocytes collected at 15 h post hCG injection. A separated blastomere was injected into the perivitelline space of the enucleated oocytes. The oocytes injected with nucleus were cultured until 19 h post hCG and then electrofused and activated by electrical stimulation with or without ionomycin and 6-DMAP. These nuclear transplant embryos were cultured in TCM-199 containing 10% FBS in 39˚C, 5% CO2 incubator for 120 h. For the oncytes activated parthenogenetically with electrical stimulation with or with-out ionomycin and the various concentration of exposure time of 6-DMAP, the highest cleavage(92.3%) and development to blastocyst stage(41.0%) were resulted from the oocytes activated by ionomycin and 2.0 mM 6-DMAP for 2.0 h, which were found to be significantly(P<0.05) higher than the cleavage(45.2%) and developement to blastocyst stage(14.3%) from the oocytes activated with electrical stimulation. The significantly(P<0.05) more oocytes(71.4%) developed to 4 cell stage at 24 h post activation by ionomycin and 6-DMAP than those by electrical stimulation(18.9%). For the nuclear transplant embryos, the cleavage rate was similarly high in oocyte activation by electrical stimulation with(79.4%) or without ionomycin and 6-DMAP(70.5%). However, the embryo development to blastocyst stage was significantly(P<0.05) higher in oocyte activation by electrical stimulation with ionomycin and 6-DMAP(44.4%) than by electrical stimulation only(25.0%). The significantly(P<0.05) more nuclear transplant embryos(45.6%) developed to 4 cell stage at 18 h post activation by electrical stimulation with ionomycin and 6-DMAP than those by electrical stimulation only(10.6%). These results indicated that the supplemental oocyte activation by ionomycin and 6-DMAP with electrical stimulation enhanced and accelerated the preimplanted in vitro development of the rabbit nuclear transplant embryos.

  • PDF

Development of nuclear Transfer Embryos using Somatic Cell Nuclei from Korean Native Cattle (Hanwoo) with High Genetic Value (고능력 한우 종모우 체세포를 이용한 핵이식 배아의 발달에 관한 연구)

  • Park, S. W.;M. R. Shin.;Kim, Y. H. .;H Shim;Kim, N. H.
    • Korean Journal of Animal Reproduction
    • /
    • v.25 no.1
    • /
    • pp.51-61
    • /
    • 2001
  • This study was conducted to determine developmental ability of reconstructed embryos by nuclear transfer using somatic cell of Korean bull with high genetic value. Fibroblast cells obtained from ear biopsy of the bull were cultured in Dulbecco's Modified Eagle's medium (DMEM) at 37$^{\circ}C$ in air containing 5% $CO_2$. The cummulus-oocyte complexes were collected from slaughterhouse and were matured in vitro for 20 h in TCM 199 culture medium and the oocytes were then enucleated in modified phosphate buffered saline with cytochalasin B. Matured bovine oocytes were enucleated by aspirating the first polar body and metaphase chromatin using a beveled pipette in modified phosphate buffered saline. The ear fibroblast cells were fused into enucleated oocyte by electrical stimulation. The reconstructed oocytes were activated with ionomycine and 6-dimethylaminopurine, and then cultured in CR1aa medium for 7.5 days. Out of 524 bovine eggs reconstructed by nuclear transfer 65.6%(277/422) embryos were cleaved, and 30.7% (85/277) cleaved embryos were developed to the morula to blastocysts. There was no difference of developmental ability in vitro of reconstructed embryos regardless of donor cell passages. In order to determine fate of foreign mitochondria of donor nucleus, the Mito Tracker stained cells were fused into enucleated oocytes. The donor mitochondria were detected early stage of embryos, but disappeared rapidly. The developmental ability of reconstructed embryos was not impaired by Mito Tracker treatments. The results indicate that viable reconstructed embryos can be producted by nuclear transfer using somatic cell of Korean bulls.bulls.

  • PDF

Cell Cycle Analysis of Bovine Cultured Somatic Cells by Flow Cytometry

  • H.T. Cheong;D.J. Kwon;Park, J.Y.;J.W. Cho;Y.H. Yang;Park, T.M.;Park, C.K.;B.K. Yang;Kim, C.I.
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.69-69
    • /
    • 2001
  • The cell cycle phase in which donor nuclei exist prior to nuclear transfer is an important factor governing developmental rates of reconstituted embryos. It was suggested that quiescent G0 and cycling G1 cells could support normal development of reconstituted embryos. In a quest of optimized donor nuclei treatment prior to nuclear transfer, this study was undertaken to examine the cell cycle characteristics of bovine fetal and adult somatic cells when cultured under a variety of culture treatments and the cell cycle change with the lapse of time after trypsinization. This was archived by measuring the DNA content of cells using flow cytometry, Cultured fetal fibroblast cells, adult skin and muscle cells, and cumulus cells were divided by 3 culture treatments; 1) grown to 60-70% confluency (cycling), 2) serum starved culture, 3) culture to confluency. Trypsinized cells were fixed by 70% ethanol and stained with propidium iodide. For one experiment, trypsinized cells were resuspended in DMEM+10% FBS and incubated for 1.5, 3 and 6 h with occasional shaking before ethanol fixation. Cell cycle phases were determined by flow cytometry enabling calculation of percentages of G0+G1, S and G2+M. The majority of cells were in G0+Gl stage regardless of origin of cells. Cultures that were serum starved or cultured to confluency contained significantly (P<0.05) higher percentages of cells in G0+G1 (89.5-95.4%). For every cell lines and culture treatments, percentages of cells in existing in G0+G1 increased with decreasing of the cell size from large to small. In the serum starved and confluency groups, about 98% of small cells were in G0+G1 Serum starved culture contained higher percentages of small-sized cells (38.5-66.9%) than cycling and confluent cultures regardless of cell lines (P<0.05). After trypsinization of fetal fibroblast and adult skin cells that were serum starved and cultured to confluency, the percentages of cells in G0+G1 significantly increased by incubation for 1.5(95.7-99.5%) and 3.0 h (95.9-98.6%). The results suggest that the efficient synchronization of bovine somatic cells in G0+G1 for nuclear transfer can be established by incubation for a limited time period after trypsinization of serum starved or confluent cells.

  • PDF

Developmental Rate of Rabbit Parthenogenetic Embryos Derived Using Different Activating Protocols

  • Chrenek, P.;Makarevich, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.5
    • /
    • pp.617-620
    • /
    • 2004
  • The present study compares development of rabbit embryos generated using different oocyte activation protocols and reconstructed with embryonic or cumulus cells as nuclear donor. In vivo matured oocytes were collected from New Zealand White rabbits at 16 h after ovulation treatment and were activated at18 h of post-ovulation treatment. The following schemes of oocytes activation were tested: 1) single electric pulse (EP, 3.2 kV/cm, 3${\times}$20 $\mu$s, 0.3 M mannitol)+5 min culture in the presence of 5 mM Ionomycin, 2) single electric pulse (EP, 3.2 kV/cm, (${\times}$20 $\mu$s, 0.3 M mannitol)+1 h culture in the presence of 2 mM 6-DMAP, and 3) three electric pulses 30 min apart. Cleavage rate, percentage of expanded and hatched blastocysts as well as total cell number of blastomeres of parthenogenetic embryos were significantly higher using either EP+6-DMAP or 3${\times}$EP schemes, comparing with EP+Ionomycin. Development rate up to hatched blastocyst stage of cloned rabbit embryos using the EP+6-DMAP for activation of nuclei were 19% for embryonic cell nuclei and 36% for cumulus cell nuclei. The best activation protocol optimalized in this study was the combined treatment "P+6-DMAP" which may be potentially used for nuclear transfer protocol.

In Vitro Developmental Competence of Porcine SCNT Embryos is improved by m-Carboxycinnamic Acid Bishydroxamide, Histone Deacetylase Inhibitor

  • Park, Sang-Hoon;Lee, Mi-Ran;Kim, Tae-Suk;Baek, Sang-Ki;Jin, Sang-Jin;Kim, Jin-Wook;Jeon, Sang-Gon;Yoon, Ho-Baek;Lee, Joon-Hee
    • Reproductive and Developmental Biology
    • /
    • v.38 no.4
    • /
    • pp.147-158
    • /
    • 2014
  • Differentiated nuclei can experimentally be returned to an undifferentiated embryonic status after nuclear transfer (NT) to unfertilized metaphase II (MII) oocytes. Nuclear reprogramming is triggered immediately after somatic cell nucleus transfer (SCNT) into recipient cytoplasm and this period is regarded as a key stage for optimizing reprogramming. In a recent study (Dai et al., 2010), use of m-carboxycinnamic acid bishydroxamide (CBHA) as a histone deacetylase inhibitor during the in vitro early culture of murine cloned embryos modifies the acetylation status of somatic nuclei and increases the developmental competence of SCNT embryos. Thus, we examined the effects of CBHA treatment on the in vitro preimplantation development of porcine SCNT embryos and on the acetylated status of histone H3K9 on cloned embryos at the zygote stage. We performed the three groups SCNT: SCNT (NT), CBHA treatment at the porcine fetus fibroblast cells (PFFs) used as donor cells prior to SCNT (CBHA-C) and CBHA treatment at the porcine SCNT embryos during the in vitro early culture after oocyte activation (CBHA-Z). The PFFs were treated with a $15{\mu}M$ of CBHA (8 h) for the early culture and the porcine cloned embryos were treated with a $100{\mu}M$ concentration of CBHA during the in vitro early culture (10 h). Cleavage rates and development to the blastocyst stage were assessed. No significant difference was observed the cleavage rate among the groups (82.6%, 76.4% and 82.2%, respectively). However, the development competence to the blastocyst stage was significantly increased in CBHA-Z embryos (22.7%) as compared to SCNT and CBHA-C embryos (8.6% and 4.1%)(p<0.05). Total cell numbers and viable cell numbers at the blastocyst stage of porcine SCNT embryos were increased in CBHA-Z embryos as compared to those in CBHA-C embryos (p<0.05). Signal level of histone acetylation (H3K9ac) at the zygote stage of SCNT was increased in CBHA-Z embryos as compared to SCNT and CBHA-C embryos. The results of the present study suggested that treatment with CBHA during the in vitro early culture (10 h) had significantly increased the developmental competence and histone acetylation level at the zygote stage.

Involvement of Caspases and Bcl-2 Family in Nitric Oxide-Induced Apoptosis of Rat PC12 Cells

  • Jeong, Yeon-Jin;Jung, Ji-Yeon;Lee, Jin-Ha;Cho, Jin-Hyoung;Lee, Guem-Sug;Kim, Sun-Hun;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.6
    • /
    • pp.329-335
    • /
    • 2006
  • This study was aimed to investigate the nitric oxide (NO)-induced cytotoxic mechanism in PC12 cells. Sodium nitroprusside (SNP), an NO donor, decreased the viability of PC12 cells in dose-and time-dependent manners. SNP enhanced the production of reactive oxygen species (ROS), and gave rise to apoptotic morphological changes including cell shrinkage, chromatin condensation, and DNA fragmentation. Expression of Bax was not affected, whereas Bcl-2 was downregulated in SNP-treated PC12 cells. SNP augmented the release of cytochrome c from mitochondria into cytosol and enhanced caspase -8, -9, and -3 activities. SNP upregulated both Fas and Fas-L, which are known to be components of death receptor assembly. These results suggest that NO induces apoptosis of PC12 cells through both mitochondria-and death receptor-mediated pathways mediated by ROS and Bcl-2 family.

High Postnatal Survival and Efficacy of Female-Derived Donor Cells in the Productive of Somatic Cloned Piglets

  • Cho, Seong-Keun;Park, Mi-Ryung;Hwang, Kyu-Chan;Kwon, Deug-Nam;Im, Yeo-Jeoung;Park, Ju-Joung;Son, Woo-Jin;Kim, Jin-Hoi
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.33-33
    • /
    • 2003
  • This study was conduct to compare the efficacy to produce male and female somatic cloned piglets. Maturation of porcine COCs was accomplished by incubation in NCSU-23 medium supplemented with 0.6 mM cysteine, 10% porcine follicular fluid, 1mM dibutyryl cyclic adenosine monophosphate (dbc-AMP, Sigma, USA), and 0.1 IU/ml human menopausal gonadotrophin (hMG, Teikokuzoki, Japan) for 20h and then cultured without dbcAMP and hMG for another 18 to 24 h. Female and male fetal cells were isolated from each fetus, cultured in ES-DMEM medium containing 10% FCS. Enucleated oocytes were fused with fetal fibroblasts (passage 4 to 15). Reconstructed embryos were cultured in NCSU-23 with 4 mg/ml BSA under mineral oil at 39$^{\circ}C$ in 5% $CO_2$ in air. A total of 12,328 nuclear-transferred embryos (1- to 4-cell stage) were surgically transferred into 69 surrogate gilts. Three recipients aborted during the period of conception. Three gilts delivered eleven female piglets, and five recipients gave rise to birth 22 male piglets. The average birth weigh of the cloned piglets was 1.52 kg (1.38~1.83 kg) in female piglets and 0.84 kg (0.45~1.25 kg) in male piglets. Alive cloned pigs was seven in female piglets (63.6%) and four in male piglets (18.2%). The other two recipients is ongoing. This study suggests that female-derived fetal cell as a nuclear donor has more capability on production of cloned piglets than male.

  • PDF

Effect of Quiescent Treatment on Nuclear Remodeling and In Vitro Development of Nuclear Transfer Embryos Derived from Bovine Fetal Fibroblast Cells (세포의 휴면처리가 소 태아섬유아세포 유래 핵이식란의 핵상변화와 체외발육에 미치는 영향)

  • 최종엽;권대진;김정익;박춘근;양부근;정희태
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.2
    • /
    • pp.217-222
    • /
    • 2000
  • This study was conducted to investigate the effect of quiescent treatment of the donor cells on the nuclear remodeling and in vitro development of fetal fibroblast cell-cloned bovine embryos. Serum starved, confluent and nonquiescent cycling fetal fibroblast cells were transferred into the enucleated oocytes. About 20∼25% of nuclear transfer embryos fused with a serum starved or confluent cell extruded a polar body, which was slightly lower than that of nontreated control (36%). About 49∼51% of nuclear transfer embryos fused with a serum starved or confluent cell had a single chromatin clump, which was slightly higher than that of nontreated control (40%). The proportion of embryos with a single chromatin clump was significantly higher (P<0.01) in nuclear transfer embryos without showing a polar body (60.5%) than with a polar body (4.7%). Development rates to the blastocyst stage were 21.7% and 20.9% when serum starved and confluent cells were transferred, which were slightly higher than that of control (14.1 %). The result of this study suggests that quiescent treatment by serum starvation or growth to confluency of donor cells could increase the number of embryos with a normal chromatin structure, which results in increased in vitro development.

  • PDF

Production of cloned Rabbits Embryos and Offsprings by Nuclear Transplantation using In Vitro Matured Oocytes in Rabbits (토끼의 체외배양 난자를 이용한 핵이식으로 복제수정란 및 복제산자의 생산)

  • 박충생;전병균;이경미;윤희준;이효종;곽대오;최상용
    • Journal of Embryo Transfer
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 1995
  • The purposes of this study were to produce cloned rabbit embryos and offsprings by nuclear transplantation(NT) using in vitro matured oocytes as nuclear recipient cytoplasm and to determine the effect of frozen nuclei donor embryos on the production efficiency of cloned embryos. The 8cell embryos were collected from the mated does by flushing oviducts with Dulbecco's phosphate buffered saline containing 10% fetal calf serum(FCS) at 40 hours after hGG injection. A portion of collected embryos were preserved at 4$^{\circ}C$ for 24 hours and a portion of them were frozen by vitrification method. The embryos used for donor nuclei were synchronized in the phase of Gi /S transition. The in vitro matured oocytes were used as recipient cytoplasm following removing the nucleus and the first polar body. The synchronized blastomeres from fresh, cooled or frozen embryos were injected into the enucleated oocytes by micromanipulation and were electrofused by electrical stimulation of three pulses for 60 $\mu$sec at 1.0 W /cm in 0.28 M mannitol solution. The fused oocytes were co-cultured with a monolayer of rabbit oviductal epithelial cells in M-199 solution containing 10% FCS for 120 hours at 39$^{\circ}C$ in a 5% $CO_2$incubator. Following in vitro culture of the NT embryos to blastocyst stage, they were stained with Hoechst 33342 dye for counting the number of blastomeres by fluorescence microscopy. The nuclear transplant embryos developed in vitro to 2- to 4-cell stage were transferred into the oviducts of synchronized recipient does. The results obtained were summarized as follows: 1. The fusion rates of the blastomeres from fresh, cooled and frozen embryos with the in vitro matured and enucleated oocytes were 100, 95.8 and 64, 3%, respectively. 2. Development in vitro to blastocyst was significantly(p<0.05) different between the cloned embryos with the blastomeres from fresh, cooled or frozen embryos as 39.0, 20. 9 and 15.7%, respectively. 3. The mean numbers of cell cycle per day during in vitro culture of cloned embryos blastomeres from fresh, cooled or frozen embryos was 1.31, 1.29 and 1.16, respectively. 4. A total of 77 nuclear transplant embryos were transferred into 6 recipient does, of which two offsprings were produced from a foster mother 31 days after embryo transfer.

  • PDF