• Title/Summary/Keyword: Dominant and Non-dominant Hand

Search Result 77, Processing Time 0.029 seconds

Comparison of Grip Force, Coordination, and Dexterity Between Dominant and Non-dominant Hand According to Gender (성별에 따른 우세손과 비우세손의 파악력, 협응력, 기민성 비교)

  • Park, Chan-Hyun;Son, Ho-Hee
    • PNF and Movement
    • /
    • v.20 no.1
    • /
    • pp.73-81
    • /
    • 2022
  • Purpose: The aim of this study was to present specific criteria for setting goals for hand rehabilitation by comparing the degree of difference in grip force, coordination, and dexterity between the dominant and non-dominant hand according to gender. Methods: We recruited 100 healthy adults in their 20s and 30s. A handheld digital dynamometer was used to evaluate the grip force of each of the dominant and non-dominant hand, a chopsticks manipulation test was used to evaluate coordination, and the Purdue Pegboard test was used to evaluate agility. Results: In all subjects, the grip force, coordination, and dexterity showed statistically significant difference (p <0.01) between the dominant and non-dominant hand. In the comparison according to gender, both male and female dominant and non-dominant hands showed statistically significant differences in grip force, coordination, and dexterity (p <0.01). In the comparison according to grip force, there was a statistically significant difference between the dominant and non-dominant hand, and men showed stronger result values in both hands compared to women (p <0.01). In the comparison according to coordination, there was no statistically significant difference between the dominant and non-dominant hand in men and women (p >0.05). In the comparison according to dexterity, there was a statistically significant difference between the dominant and non-dominant hand, and women were shown to be faster in performance time with both hands, compared to men (p <0.01). Conclusion: Differences according to gender exist in grip force and dexterity but not coordination, and differences between dominant and non-dominant hand exists across all measurements. The results suggest setting a recovery goal according to dominance and gender during rehabilitation of hand function.

The Effects of Extensor Pattern Position and Elastic Taping of Non-Dominant Hand on the Grip Strength of Dominant Hand

  • Lee, Jung-Hoon;Yoo, Won-Gyu;An, Duk-Hyun
    • Physical Therapy Korea
    • /
    • v.16 no.4
    • /
    • pp.8-15
    • /
    • 2009
  • Grip strength is an objective indicator for evaluating the functional movement of upper extremities. Therapists have been using it for a long time as an excellent barometer for evaluating the therapy process, therapeutic effects and prognosis of patients with injuries in upper extremities. This study investigated the effects of extensor pattern position and elastic taping of non-dominant hand on the grip strength of dominant hand among general adults. The subjects of this study were 23 males and 7 females from physical therapy departments of 3 Universities located in Busan who agreed to participate in the experiment and the resultant data were analyzed using SPSS version 12.0. The results of the study were as follows. First, there was a significant difference between the grip strength of dominant hand when the non-dominant hand was at the neutral position and that when the non-dominant hand was at the extensor pattern position and both hands were at the maximum strength simultaneously (Bonferroni-corrected p<.001). Second, there was a significant difference between the grip strength of dominant hand when the non-dominant hand was at the neutral position and that when the elastic taping of non-dominant hand was applied (Bonferroni-corrected p<.001). Third, there was no significant difference between the grip strength of dominant hand when the non-dominant hand was at the extensor pattern position and both hands were at the maximum strength simultaneously and that when the elastic taping of non-dominant hand was applied. The irradiation effects through the extensor pattern position of non-dominant hand and application of the elastic taping to non-dominant hand showed significant results in improving the maximum grip strength of dominant hand. This finding could be suggested as the probability for the indirect treatment of the upper extremities of hemiplegia and orthopedic patients due to the long-term fixing of upper extremities.

  • PDF

The Influence of Different Objects and Target Locations of Dominant Hand on the Non-Dominant Hand Movement Kinematics in Bimanual Reaching (양손으로 물체 옮기기 과제 수행 시 우세손이 옮기는 물체의 종류와 목표점의 위치 변화가 비우세손의 팔뻗기 동작에 미치는 영향)

  • Kim, Min-Hee;Jeon, Hye-Seon
    • Physical Therapy Korea
    • /
    • v.15 no.3
    • /
    • pp.44-52
    • /
    • 2008
  • The purpose of this study was to investigate the effects of different objects and target location of dominant hand on the non-dominant hand movement kinematics in a bimanual reaching task. Fifteen right-handed volunteers were asked to reach from same starting point to the different target point of right and left hand with grasping the objects of different size. Independent variables were 1) three different object types (small mug cup, name pen, and PET bottle), and 2) three different target locations (shorter distance, same distance, and longer distance than the non-dominant hand) of the dominant hand. Dependent variables were movement time (MT), movement distance (MD), movement mean velocity ($MV_{mean}$), and movement peak velocity ($MV_{peak}$) of the non-dominant hand. Repeated measures two-way analysis of variance (ANOVA) was used to test for differences in the non-dominant hand movement kinematics during bimanual reaching. The results of this study were as follows: 1) MT of the non-dominant hand was increased significantly when traveling with grasping the mug cup and reaching the far target location, and was decreased significantly when traveling with grasping the PET bottle and reaching the near target location of the dominant hand. 2) MD of the non-dominant hand was significantly increased during reaching the far target location, and significantly decreased during reaching the near target location with dominant hand. 3) $MV_{mean}$ of the non-dominant hand was increased significantly when traveling with grasping the PET bottle, and was decreased significantly when traveling with grasping the mug cup of the dominant hand. Therefore, it can be concluded that the changes of the ipsilateral hand movement have influence on coupling of the contralateral hand movement in bimanual reaching.

  • PDF

A Study on the Difference of Total Grip Strength and Individual Finger Force between Dominant and Non-dominant Hands in Various Grip Spans of Pliers

  • Kong, Yong-Ku;Park, Hyunjoon;Kim, Dujeong;Lee, Taemoon;Roh, Eunyoung;Lee, Seulki;Zhao, Wenbin;Kim, Dae-Min;Kang, Hyun-Sung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.503-509
    • /
    • 2013
  • Objective: The purpose of this study is to analyze the individual finger force between dominant hand and non-dominant hand and to investigate an effect of the individual finger on the total grip strength depending on dominant hand and non-dominant hand. Background: Many studies on the ratio of the grip force between dominant hand and non-dominant hand has been researched. While a 10% rule which is a ratio of the grip force between dominant hand and non-dominant hand has been applied in most studies, studies on the rate of the individual finger force between dominant hand and non-dominant hand have been insufficiently researched. Method: The experiment was preceded with 17 subjects (male, mean 25.8 ages). The individual finger force and total grip strength were measured using pliers being able to change the grip span from 45 to 80mm. Results: The difference of total grip strength between dominant hand and non-dominant hand is following 10% rule. However, the difference of individual finger force between dominant hand and non-dominant hand are not same as the difference of total grip strength. Especially in the case of grip span with 50mm, the differences between total grip strength, index finger, middle finger, ring finger, and little finger were $9.87{\pm}14.80%$, $8.95{\pm}37.17%$, $13.71{\pm}28.27%$, $6.77{\pm}24.35%$, $39.29{\pm}42.46%$, respectively, with p=0.018 of statistical significance. Additionally, the results of regression analysis in 50 and 60mm of grip span showed that the difference in ring finger affected the most to the total grip strength; and the effects followed in order of index finger, middle finger, and little finger. Conclusion: Our study suggests that an effect of individual finger and grip span of pliers have to be considered when explaining the difference of the total grip strength between dominant hand and non-dominant hand. Application: This result is expected to be used for designing ergonomic hand tool.

Comparison of Grip and Pinch Strength between Dominant and Non-dominant Hand according to Type of Handedness of Female College Students

  • Kim, Ji-Sung;Lee, Sa-Gyeom;Park, Sung-Kyu;Lee, Sang-Min;Kim, Bo-Kyung;Choi, Jung-Hyun;Kim, Soon-Hee
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.2 no.1
    • /
    • pp.201-206
    • /
    • 2011
  • In using both hands, everyone dominantly use one hand and it is called left-handedness or right-handedness person. Measurements of grip and pinch strength provide objective indexes to represent functional integrity of the upper extremity. This study was conducted for thirty female college students(19 right-handedness and 11 lefthandedness). For assessment of the type of handedness, questionnaire was used; for grip strength, Jamar dynamometer was used; for pinch strength, Jamar pinch gauge was used. In right handedness, the grip and pinch strength of the dominant right hand was significantly higher than those of the non-dominant hand. In addition, regular exercises were shown to give influences on reduction of strength gaps between dominant and non-dominant hands. In both groups of left and right handedness, the grip and pinch strength of the dominant hand were significantly higher than those of the non-dominant hand, and regular exercises were shown to give influences on reduction of strength gaps between dominant and non-dominant hand.

The Difference of Hand Functions in Dominant Hand Types (우세손의 유형에 따른 손 기능 차이에 관한 연구)

  • Lee, Sun-Myung
    • Journal of Korean Clinical Health Science
    • /
    • v.2 no.2
    • /
    • pp.119-125
    • /
    • 2014
  • Purpose. This study was conducted to prove the difference of dominant hand and non dominant hand in hand functions. Methods. We study difference of dominant hand and non dominant hand in hand functions that 40 university students participated in the study and performed a correlation between Jebsen-Taylor Hand Function test, O'conner Finger Dexterity test and Purdue Pegboard test. Results. In left dominant hand are functional of small common object, simulated feeding and large light object in Jebsen-Taylor Hand Function Test. Also O'conner Finger dexterity test are functional in left dominant hand and same result in Purdue pegboard test. Conclusion. The results of this study was left dominant hand is more functional than right dominant hand. So, we suggests that both hand using are improving of hand function in right dominant hand.

A Review Study for Grip Strengths of Hand (손의 파악력에 대한 연구 고찰)

  • Kong, Yong-Ku;Sohn, Seong-Tae;Han, Jun-Goo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.5
    • /
    • pp.715-725
    • /
    • 2010
  • Many researches for grip strengths, using diverse ways such as subject, equipment, posture, method, has been conducted to investigate the differences of grip performance of dominant hand and non-dominant hand. It is hard to conclude, however, with one single or simple answer for this question based on researches due to various findings. Although 'the 10% rule' which is the dominant hand may produces a 10% greater grip strength than the non-dominant hand was often mentioned for this issue, there is still lack of supports for utilizing to general cases. This manuscript provides an overall review on the 53 research papers which were measured grip strengths of dominant as well as non-dominant hand in various conditions. According to this review study, many research findings reported that overall the grip strength differences between dominant and non-dominant hands were 6~10%, regardless of gender and age, followed by 0~5%, 11~15%, and over 16%. More detail information for grip strengths in both hands for gender and age groups were also presented in this study.

The Age-Related Change of Hand Function (연령에 따른 손기능의 변화)

  • Kim Yong-Su;Park Rae-Joon;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.6 no.1
    • /
    • pp.121-132
    • /
    • 1994
  • This study was carried out to know the change of age-related hand function. 210 adults without neurosurgical and orthopedic disability from 15 to 90 years of age participation this study voluntarily. The results are as followings. 1. The hand function decreased according to age increasing. 2. The dominant and non-dominant hand function was decreased in ever-sixty age groups in the subtests of writing, card turning small common objects, simulated feeding, large light objects and large heavy objects greatly, but decreased between forty and fifty age groups in checkers greatly. 3. The dominant hand function was more excellent than non-dominant hand. 4. The dominant and non-dominant hand function was statistically significant between age groups(p<0.01). 5. The one-way ANOVA of subtests according to age increasing revealed significant statistically(p<0.01). 6. The correlation coefficients between subtests and age increasing revealed significant statistically in the dominant and non-dominant hand(p<0.01).

  • PDF

The Effect on Length Cognition Ability in Dominant Eye & Hand (우성안과 주동수가 길이 인지능력에 미치는 영향)

  • Nam, Kun-Woo
    • Journal of Korean Physical Therapy Science
    • /
    • v.16 no.4
    • /
    • pp.59-65
    • /
    • 2009
  • Background: Human body is formed of symmetric bilateral structures that are comprised of eye, upper arm, lower arm and etc. but, we are used only dominant components. The purpose of this study was to analysis length cognition ability in dominant eye & hand. Method: Total 180 persons (male 32, female 138) were participated in this study. They were tested with 'hole in the card' test for identification of dominant eye's side and the question for identification of dominant hand's side, then the length cognition ability was measured in right & left axillary level by describing 10cm line. Results: The results by independent t-test were as follows. In difference of length cognition ability in right axillary level between right dominant eyed group & left dominant eyed group, right dominant eyed group was superior to left dominant eyed group, but significant difference was not existed statistically(p>.05). In left axillary level, right dominant eyed group was superior to left dominant eyed group, but significant difference was not existed statistically(p>.05). In axillary level of dominant eye's side, non-crossed group was superior to crossed group, but significant difference was not existed statistically(p>.05). In axillary level of non-dominant eye's side, non-crossed group was superior to crossed group, but significant difference was not existed statistically(p>.05). Conclusion: These result can be applied to the learning of palpation & observation skill in physical therapy.

  • PDF

The Study on Difference in Height Cognition Ability in Dominant and Non-dominant Eye (우세눈과 비우세눈의 높낮이 식별 인지능력 차이에 관한 연구)

  • Choi, Yul-Jung;Lee, Jun-Yong;Sim, Hyun-Po
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.22 no.2
    • /
    • pp.29-33
    • /
    • 2016
  • Background: The purpose of this study was to investigate the difference of height cognition ability according to dominant or non-dominant eye. Methods: Forty one healthy adults (male: 19, female: 22, 22-43 years) participated in this study. Hole in the card test was performed to identify dominant eye. To figure out height cognition ability between dominant and non-dominant eye, we had subjects answer which point is higher or even on the monitor. Results: The Right answer on dominant eye was $8.15{\pm}1.44$ point and the right answer on non-dominant eye was $7.56{\pm}1.55$ point. There was a statistically significant difference between dominant eye group and non-dominant eye group (p<.05). Conclusion: We think that the dominant eye may be used for reliable diagnosis. In future study, investigate on relation between dominant hand and dominant eye and the difference of dominant eye and non-dominant eye when to palpation are required.

  • PDF