• Title/Summary/Keyword: Domestic regulations on radiation safety

Search Result 11, Processing Time 0.031 seconds

Development of a Measurement Tool for Radiation Safety Regulations (방사선안전규제 측정도구 개발)

  • Han, Eun-Ok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6203-6207
    • /
    • 2012
  • The aim of the study was to develop an objective measurement tool, which could measure radiation safety regulations as an advanced research to draw evidentiary conclusions for the rationalization of radiation safety regulations as organizations continuously increase consumption of radiation material. The survey was based on the contents of Vol 1~21 of US NRC NUREG 1556 (Consolidated Guidance About Materials Licenses) and material from the Nuclear Safety Act which was based on radiation safety managers who are responsible for about 10% of the domestic registered organizations for radiation usage. As a result of the analysis, 3 main causes were extracted based on 20 questions. Each causes were named as Cause 1: 'Radioactive Safety Regulations Requirements', Cause 2: 'Compatibility of Actual Safety Regulation', and Cause 3: 'RI/RG radiation Source Classification' respectively. The dispersal explanations of each causes were explained in total of 60.417% by 40.140% of Cause 1, 13.721% of Cause 2, and Cause 3 for 6.556% If radiation safety regulation standards are drawn using the radiation safety regulation measurement tool, which is suggested in this study, this could be not only comply with international standards but also could be used to propose a practical standard to domestic radiation safety managers.

Differences between Each Requirement for Radiation Safety Regulation Levels (방사선안전규제 요건별 인식도 차이)

  • Han, Eun Ok;Cho, Dae Hyung
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.4
    • /
    • pp.219-225
    • /
    • 2012
  • This study makes differentiated regulations which can maximize the efficiency and convenience of radiation safety regulations by deriving evidence required to establish reasonable safety regulatory structure based on the determination of the levels of actual radiation safety regulations for radiation safety managers to perform radiation safety. We surveyed approximately 10% of radiation safety managers from domestic radiation-using organizations which was based on the Nuclear Safety Act and NUREG Vol. 1~21 of RS-G-1.9 (2005), NRC of IAEA, etc. The radiation safety managers showed the highest level of awareness on the requirements for exposure management ($3.32{\pm}0.910$), and the lowest level on the requirements for record keeping and storage of documents ($2.84{\pm}0.826$). Industrial organizations showed higher levels of awareness than medical organizations whose regulations should be more stringent on requirements of the status and management of radioactive sources, facilities, measurements, pollution control, measuring equipment, monitoring, education and training, and exposure management. This suggests that the actual regulations need to be re-evaluated because it is attributed to the regulations which are statistically significant difference of the levels of radiation safety regulations between industrial organizations and medical organizations. The process of developing regulatory requirements for each characteristic of domestic organizations needs to be done in future studies, as well as safety regulations to maximize convenience should be achieved if radiation safety regulations are conducted in consideration with the characteristics of each organization.

Status of Domestic and International Recommendations for Protection Design and Evaluation of Medical Linear Accelerator Facilities

  • Choi, Sang Hyoun;Shin, Dong Oh;Shin, Jae-ik;Kwon, Na Hye;Ahn, So Hyun;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.83-91
    • /
    • 2021
  • Various types of high-precision radiotherapy, such as intensity-modulated radiation therapy (IMRT), tomotherapy (Tomo), and stereotactic body radiation therapy have been available since 1997. After being covered by insurance in 2015, the number of IMRT cases rapidly increased 18-fold from 2011 to 2018 in Korea. IMRT, which uses a high-beam irradiation monitor unit, requires higher shielding conditions than conventional radiation treatments. However, to date, research on the shielding of facilities using IMRT and the current understanding of its status are insufficient, and detailed safety regulation procedures have not been established. This study investigated the recommended criteria for the shielding evaluation of facilities using medical linear accelerators (LINACs), including 1) the current status of safety management regulations and systems in domestic and international facilities using medical LINACs and 2) the current status of the recommended standards for safety management in domestic and international facilities using medical LINACs. It is necessary to develop and introduce a safety management system for facilities using LINACs for clinical applications that is suitable for the domestic medical environment and corresponds to the safety management systems for LINACs used overseas.

Improvement of the Occupational Safety and Health Act by the Comparison of the Domestic and Foreign Radon-related Policies (국내·외 라돈 관련 제도 비교를 통한 산업안전보건법 개선방안)

  • Lim, Dae Sung;Kim, Ki-Youn;Cho, Yong Min;Seo, Sung Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.3
    • /
    • pp.226-236
    • /
    • 2021
  • Objectives: Concerns have been raised about the possible health effects of radon on both workers and consumers with the spread of social attention to the impact of radon exposure. Thus, an entire raw material handling workshop was investigated, and standards for radon levels in the workplace were newly established at 600 Bq/m3. However, regulations on the management of workers exposed to radon are still insufficiently developed. Therefore, by comparative analysis of overseas and domestic radon-related regulations for workplaces, this study aims to suggest improvement plans of protection regulations under the Occupational Safety and Health Act (OSH Act) for the prevention of health disorders of radon-exposed workers. Methods: For overseas case studies, we consulted radon-related laws and reports officially published on the websites of the European Union (EU), the United States (U.S.) and the United Kingdom (UK) government agencies. Domestic law studies were conducted mainly on the Act on Protective Action Guidelines against Radiation in the Natural Environment and the OSH Act. Results: In Europe, the basic safety standards for protection against risks arising from radon (Council Directive 2013/59/EURATOM of 5 December 2013) was established by the EU. They recommend that the Member States manage radon level in workplaces based on this criterion. In the U.S., the standards for workplaces are controlled by the Occupational Safety and Health Administration (OSHA) and the Mine Safety and Health Administration (MSHA). Action on radon in the UK is specified in "Radon in the workplace" published by the Health and Safety Executive (HSE). Conclusions: The Act on Protective Action Guidelines against Radiation in the Natural Environment mainly refers to the management of workplaces that use or handle raw materials but does not have any provisions in terms of protecting naturally exposed workers. In the OSH Act, it is necessary to define whether radon is included in radiation for that reason that its current regulations have limitations in ensuring the safety workers who may be exposed to naturally occurring radon. The management standards are needed for workplaces that do not directly deal with radon but are likely to be exposed to radon. We propose that this could be specified in the regulations for the prevention of health damage caused by radiation, not in Article 125 of the OSH Act.

[ $^{99m}Tc$ ] Generator Safety Simulation Based on GEANT4 (GEANT4를 이용한 $^{99m}Tc$ Generator 안전성 시뮬레이션)

  • Kang, Sang-Koo;Han, Dong-Hyun;Kim, Chong-Yeal
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Technisium $(^{99m}Tc)$ is one of the most widely used radioactive isotopes for diagnosis in nuclear medicine. In general, technisium is produced inside the so called $^{99m}Tc$ generator which is usually made out of lead to shield relatively high energy radiation from $^{99}Mo$ and its daughter nuclide $^{99m}Tc$. In this paper, a GEANT4 simulation is carried out to test the safety of the $^{99m}Tc$ generator, taking the Daiichi product with radioactivity of 500 mCi as an example. According to the domestic regulation on radiation safety, the dose at 10 cm and 100 cm away from the surface of shielding container should not exceed 2.0 mSv/h and 0.02 mSv/h, respectively. The simulated dose turned out to be less than the limit, satisfying the domestic regulation.

  • PDF

Re-evaluation of Korean Effluent Concentration Limits and Comparative Analysis

  • Hwang, Won Tae;Lee, Joeun;Kwon, Dahye;Kim, Eun Han;Han, Moon Hee
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.124-129
    • /
    • 2018
  • Background: Effluent Concentration Limits (ECLs) were re-evaluated via direct calculation using dose coefficients based on radiation protection quantity introduced in Korea and the intrinsic breathing rates of Korean residents. Materials and Methods: The re-evaluated ECLs were compared with the domestic standards given in the Notice of the Nuclear Safety and Security Commission (NSSC), as well as with ECLs specified in the Code of Federal Regulations (CFR). Results and Discussion: The relative ratios of the re-evaluated ECLs to the currently applied domestic standards differed depending on the radionuclide type, but it was clearly shown that, for tritium ($^3H$) and radiocarbon ($^{14}C$), which significantly affect radiological dose to the public during the normal operation of nuclear power plants, the re-evaluated ECLs were higher than the domestic standards. This implies that Korean standards are relatively conservative. Conclusion: The re-evaluated results for each age group showed that $^{131}I$ (radioiodine), one of the significant radionuclides, had the lowest values, but nonetheless, the domestic standards for radioiodine were lower than the ECLs given in the CFR and the re-evaluated ECLs via a method given in the CFR.

Safety Simulation of Therapeutic I-131 Capsule Using GEANT4 (GEANT4를 이용한 치료용 I-131 캡슐의 안정성 시뮬레이션)

  • Jeong, Yeong-Hwan;Kim, Byung-Cheol;Sim, Cheol-Min;Seo, Han-Kyung;Gwon, Yong-Ju;Han, Dong-Hyun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.57-61
    • /
    • 2014
  • Purpose Iodine (I-131) is one of the most widely used radioactive isotopes for therapeutic in the field of nuclear medicine. Therapeutic I-131 capsule is made out of lead to shield high energy radiation. Accurate dosimetry is necessarily required to perform safe and effective work for relative workers. The Monte Carlo method is known as a method to predict the absorbed dose distribution most accurately in radiation therapy and many researchers constantly attempt to apply this method to the dose calculation of radiotherapy recently. This paper aims to calculate distance dependent and activity dependent therapeutic I-131 capsule using GEANT4. Materials and Methods Therapeutic capsules was implemented on the basis of the design drawings. The simulated dose was determined by generating of gamma rays of energy to more than 364 keV. The simulated dose from the capsule at the distance of 10 cm and 100 cm was measured and calculated in the model of water phantom. The simulated dose were separately calculated for each position of each detector. Results According to the domestic regulation on radiation safety, the dose at 10 cm and 100 cm away from the surface of therapeutic I-131 capsule should not exceed 2.0 mSv/h and 0.02 mSv/h, respectively. The simulated doses turned out to be less than the limit, satisfying the domestic regulation. Conclusion These simulation results may serve as useful data in the prediction of hands dose absorbed by I-131 capsule handling. GEANT4 is considered that it will be effectively used in order to check the radiation dose.

  • PDF

A Plain on Operation Improvement according to the Analysis of Radio Field's Environment in Domestic Coastal (연안해역 전파환경의 분석과 운용개선 방안)

  • Yun, Jae-Jun;Kim, Byung-Ok;Choi, Jo-Cheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1117-1124
    • /
    • 2005
  • The radio field environment is very different according to frequency band, therefore communication condition is equation that VHF is passed by direct radiation and HF is via reflect radiation in ionosphere. Load a ship according to the enforcement regulations of the ships safety act have specificated the radio equipment that should be operating. This paper have analysed by the simulation program about radio field environment for research the communications condition, which is VHF & HF band in domestic coastal. We have Predicted to radio field environment and communications condition using the data of analysis and domestic radio regulation regard to coast navigational ship. Therefore have proposed the necessity for rationally plan on improvement the radio regulation and network cooperation of VHF radio station.

  • PDF

A Study on the Problems and Improvement of the Safety Management Law of Nuclear Facilities -Focused on Safety Management of Aquatic Products- (원자력시설 안전관리 법제의 문제점과 개선방안 연구 -수산물의 안전관리를 중심으로-)

  • Lee, Woo-Do
    • The Journal of Fisheries Business Administration
    • /
    • v.50 no.2
    • /
    • pp.23-40
    • /
    • 2019
  • The main purpose of this study is to analyze and examine the problems of the law systems of the safety and maintenance of nuclear facilities and to propose the improvements with respect to the related problems especialy focused on safety management of aquatic products. Therefore, the results of the paper would be helpful to build an effective management law system of safety and maintenance of nuclear facilities and fisheries products. The research methods are longitudinal and horizontal studies. This study compares domestic policies with foreign policies of nuclear plants and aquatic products. Using the above methods, examining the current system of nuclear-related laws and regulations, we have found that there exist 13 Acts including "Nuclear Safety Act", etc. Safety laws related on nuclear facilities have seven Acts including "Nuclear Safety Act", "the Act on Physical Protection and Radiological Emergency", "Radioactive waste control Act", "Act on Protective Action Guidelines against Radiation in the Natural Environment", "Special Act on Assistance to the locations of facilities for disposal low and intermediate level radioactive waste", "Korea Institute of Nuclear Safety Act". "Act on Establishment and Operation of the Nuclear Safety and Security Commission". The seven laws are composed of 119 legislations. They have 112 lower statute of eight Presidential Decrees, six Primeministrial Decrees and Ministrial Decrees, 92 administrative rules (orders), 6 legislations of local self-government aself-governing body. The concluded proposals of this paper are as follows. Firstly, we propose that the relationship between the special law and general law should be re-established. Secondly, the terms with respect to law system of safety and maintenance of nuclear plants should be redefined and specified. Thirdly, it is advisable to re-examine and re-establish the Law System for Safety and Maintenance of Nuclear Facilities. and environmental rights like the French Nuclear Safety Legislation. Lastly, inadequate legislation on the aquatic pollution damage should be re-established. It is necessary to ensure sufficient transparency as well as environmental considerations in the policy decisions of the Korean government and legislation of the National Assembly. It is necessary to further study the possibilities of accepting the implications of the French legal system as a legal system in Korea. In conclusion, the safety management of nuclear facilities is not only focused on the secondary industry and the tertiary industry centering on power generation and supply, but also on the primary industry, which is the food of the people. It is necessary to prevent damage to be foreseen. Therefore, it is judged that there should be no harm to the people caused by contaminated marine products even if the "Food Safety Law for Prevention of Radiation Pollution Damage" is enacted.

Radiological analysis of transport and storage container for very low-level liquid radioactive waste

  • Shin, Seung Hun;Choi, Woo Nyun;Yoon, Seungbin;Lee, Un Jang;Park, Hye Min;Park, Seong Hee;Kim, Youn Jun;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4137-4141
    • /
    • 2021
  • As NPPs continue to operate, liquid waste continues to be generated, and containers are needed to store and transport them at low cost and high capacity. To transport and store liquid phase very low-level radioactive waste (VLLW), a container is designed by considering related regulations. The design was constructed based on the existing container design, which easily transports and stores liquid waste. The radiation shielding calculation was performed according to the composition change of barium sulfate (BaSO4) using the Monte Carlo N-Particle (MCNP) code. High-density polyethylene (HDPE) without mixing the additional BaSO4, represented the maximum dose of 1.03 mSv/hr (<2 mSv/hr) and 0.048 mSv/hr (<0.1 mSv/hr) at the surface of the inner container and at 2 m away from the surface, respectively, for a 10 Bq/g of 60Co source. It was confirmed that the dose from the inner container with the VLLW content satisfied the domestic dose standard both on the surface of the container and 2 m from the surface. Although it satisfies the dose standard without adding BaSO4, a shielding material, the inner container was designed with BaSO4 added to increase radiation safety.