• 제목/요약/키워드: Domestic Spent Fuel

검색결과 56건 처리시간 0.022초

A STUDY ON THE INITIAL CHARACTERISTICS OF DOMESTIC SPENT NUCLEAR FUELS FOR LONG TERM DRY STORAGE

  • Kim, Juseong;Yoon, Hakkyu;Kook, Donghak;Kim, Yongsoo
    • Nuclear Engineering and Technology
    • /
    • 제45권3호
    • /
    • pp.377-384
    • /
    • 2013
  • During the last three decades, South Korean nuclear power plants have discharged about 5,950 tons of spent fuel and the maximum burn-up reached 55 GWd/MTU in 2002. This study was performed to support the development of Korean dry spent fuel storage alternatives. First, we chose V5H-$17{\times}17$ and KSFA-$16{\times}16$ as representative domestic spent fuels, considering current accumulation and the future generation of the spent fuels. Examination reveals that their average burn-ups have already increased from 33 to 51 GWd/MTU and from 34.8 to 48.5 GWd/MTU, respectively. Evaluation of the fuel characteristics shows that at the average burn-up of 42 GWd/MTU, the oxide thickness, hydrogen content, and hoop stress ranged from $30{\sim}60{\mu}m$, 250 ~ 500 ppm, and 50 ~ 75 MPa, respectively. But when burn-up exceeds 55 GWd/MTU, those characteristics can increase up to 100 ${\mu}m$, 800 ppm, and 120 MPa, respectively, depending on the power history. These results demonstrate that most Korean spent nuclear fuels are expected to remain within safe bounds during long-term dry storage, however, the excessive hoop stress and hydrogen concentration may trigger the degradation of the spent fuel integrity early during the long-term dry storage in the case of high burn-up spent fuels exceeding 45 GWd/MTU.

REVIEW OF SPENT FUEL INTEGRITY EVALUATION FOR DRY STORAGE

  • Kook, Donghak;Choi, Jongwon;Kim, Juseong;Kim, Yongsoo
    • Nuclear Engineering and Technology
    • /
    • 제45권1호
    • /
    • pp.115-124
    • /
    • 2013
  • Among the several options to solve PWR spent fuel accumulation problem in Korea, the dry storage method could be the most realistic and applicable solution in the near future. As the basic objectives of dry storage are to prevent a gross rupture of spent fuel during operation and to keep its retrievability until transportation, at the same time the importance of a spent fuel integrity evaluation that can estimate its condition at the final stage of dry storage is very high. According to the national need and technology progress, two representative nations of spent fuel dry storage, the USA and Japan, have established different system temperature criteria, which is the only controllable factor in a dry storage system. However, there are no technical criteria for this evaluation in Korea yet, it is necessary to review the previously well-organized methodologies of advanced countries and to set up our own domestic evaluation direction due to the nation's need for dry storage. To satisfy this necessity, building a domestic spent fuel test database should be the first step. Based on those data, it is highly recommended to compare domestic data range with foreign results, to build our own criteria, and to expand on evaluation work into recently issued integrity problems by using a comprehensive integrity evaluation code.

Development of the Defect Analysis Technology for CANDU Spent Fuel

  • Kim, Yong-Chan;Lee, Jong-Hyeon
    • 방사성폐기물학회지
    • /
    • 제19권2호
    • /
    • pp.215-223
    • /
    • 2021
  • The domestic CANDU nuclear power plants have been operated for a long time and various unforeseen spent fuel defects have been discovered. As the spent fuel defects are important factors in the safety of the nuclear power plant, a study on the analysis of the spent fuel defects to prevent their recurrence is necessary. However, in cases where the fuel rods inside the fuel assembly are defected, it is difficult to dismantle the fuel assembly owing to their welded structure and the facility conditions of the plant. Therefore, it is impossible to analyze the spent fuel defect because it is difficult to visually check the shape of the fuel defect. To resolve these problems, an analysis technology that can predict the number of defected fuel rods and defect size was developed. In this study, we developed a methodology for investigating the root cause of spent fuel defects using a database of the earlier fuel defects in the plants. It is anticipated that in the future this analysis technology will be applied when spent fuel defects occur.

DEVELOPMENT OF GEOLOGICAL DISPOSAL SYSTEMS FOR SPENT FUELS AND HIGH-LEVEL RADIOACTIVE WASTES IN KOREA

  • Choi, Heui-Joo;Lee, Jong Youl;Choi, Jongwon
    • Nuclear Engineering and Technology
    • /
    • 제45권1호
    • /
    • pp.29-40
    • /
    • 2013
  • Two different kinds of nuclear power plants produce a substantial amount of spent fuel annually in Korea. According to the current projection, it is expected that around 60,000 MtU of spent fuel will be produced from 36 PWR and APR reactors and 4 CANDU reactors by the end of 2089. In 2006, KAERI proposed a conceptual design of a geological disposal system (called KRS, Korean Reference disposal System for spent fuel) for PWR and CANDU spent fuel, as a product of a 4-year research project from 2003 to 2006. The major result of the research was that it was feasible to construct a direct disposal system for 20,000 MtU of PWR spent fuels and 16,000 MtU of CANDU spent fuel in the Korean peninsula. Recently, KAERI and MEST launched a project to develop an advanced fuel cycle based on the pyroprocessing of PWR spent fuel to reduce the amount of HLW and reuse the valuable fissile material in PWR spent fuel. Thus, KAERI has developed a geological disposal system for high-level waste from the pyroprocessing of PWR spent fuel since 2007. However, since no decision was made for the CANDU spent fuel, KAERI improved the disposal density of KRS by introducing several improved concepts for the disposal canister. In this paper, the geological disposal systems developed so far are briefly outlined. The amount and characteristics of spent fuel and HLW, 4 kinds of disposal canisters, the characteristics of a buffer with domestic Ca-bentonite, and the results of a thermal design of deposition holes and disposal tunnels are described. The different disposal systems are compared in terms of their disposal density.

Proposal of an Improved Concept Design for the Deep Geological Disposal System of Spent Nuclear Fuel in Korea

  • Lee, Jongyoul;Kim, Inyoung;Ju, HeeJae;Choi, Heuijoo;Cho, Dongkeun
    • 방사성폐기물학회지
    • /
    • 제18권spc호
    • /
    • pp.1-19
    • /
    • 2020
  • Based on the current high-level radioactive waste management basic plan and the analysis results of spent nuclear fuel characteristics, such as dimensions and decay heat, an improved geological disposal concept for spent nuclear fuel from domestic nuclear power plants was proposed in this study. To this end, disposal container concepts for spent nuclear fuel from two types of reactors, pressurized water reactor (PWR) and Canada deuterium uranium (CANDU), considering the dimensions and interim storage method, were derived. In addition, considering the cooling time of the spent nuclear fuel at the time of disposal, according to the current basic plan-based scenarios, the amount of decay heat capacity for a disposal container was determined. Furthermore, improved disposal concepts for each disposal container were proposed, and analyses were conducted to determine whether the design requirements for the temperature limit were satisfied. Then, the disposal efficiencies of these disposal concepts were compared with those of the existing disposal concepts. The results indicated that the disposal area was reduced by approximately 20%, and the disposal density was increased by more than 20%.

사용후핵연료 운반용기 및 건식저장 기술 동향 (Technology Trends in Spent Nuclear Fuel Cask and Dry Storage)

  • 신중철;양종대;성운학;류승우;박영우
    • 한국압력기기공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.110-116
    • /
    • 2020
  • As the management plan for domestic spent nuclear fuel is delayed, the storage of the operating nuclear power plant is approaching saturation, and the Kori 1 Unit that has reached its end of operation life is preparing for the dismantling plan. The first stage of dismantling is the transfer of spent nuclear fuel stored in storage at plants. The spent fuel management process leads to temporary storage, interim storage, reprocessing and permanent disposal. In this paper, the technical issues to be considered when transporting spent fuel in this process are summarized. The spent fuels are treated as high-level radioactive waste and strictly managed according to international regulations. A series of integrity tests are performed to demonstrate that spent fuel can be safely stored for decades in a dry environment before being transferred to an intermediate storage facility. The safety of spent fuel transport container must be demonstrated under normal transport conditions and virtual accident conditions. IAEA international standards are commonly applied to the design of transport containers, licensing regulations and transport regulations worldwide. In addition, each country operates a physical protection system to reduce and respond to the threat of radioactive terrorism.

국내 경수로 사용후핵연료의 금속 겸용용기 장전을 위한 최소 냉각기간 평가 (The Evaluation of Minimum Cooling Period for Loading of PWR Spent Nuclear Fuel of a Dual Purpose Metal Cask)

  • 도호석;김태만;조천형
    • 방사성폐기물학회지
    • /
    • 제14권4호
    • /
    • pp.411-422
    • /
    • 2016
  • 최근 국내 원전의 경수로 사용후핵연료 습식 저장시설의 포화시점이 다가옴에 따라 운반 및 저장용기를 이용한 건식저장시스템 개발이 활발하게 수행되고 있다. 일반적으로 사용후핵연료 운반 및 저장용기 설계를 위한 차폐해석 시 장전 가능 연료 중 가장 보수적인 연료를 설계기준연료로 선정하여 해석을 수행한다. 그러나 실제 금속 운반용기에 장전되는 사용후핵연료는 해석평가에 적용된 설계기준연료에 한정되지 않고 다양하기 때문에 초기농축도, 연소도, 최소냉각기간의 특성을 고려한 차폐평가를 통하여 장전가능 여부가 결정된다. 이에 본 연구에서는 금속 겸용용기에 장전 가능한 연료를 대상으로 국내 운반기준을 만족하는 최소냉각기간의 결정을 위한 차폐해석 방법을 기술하였다. 특히 발생량이 많은 초기농축도 3.0~4.5wt%의 사용후핵연료는 차폐해석 구간을 세분화하여 평가하여 연구결과의 활용에 효율성을 높이고자 하였다. 차폐평가를 통해 2008년까지 국내 원전에서 발생한 장전대상연료 중 약 81%의 사용후 핵연료를 금속겸용용기로 운반할 수 있는것으로 평가되었다. 본 연구결과를 통해 금속 겸용용기의 운반조건에 장전 가능한 연료의 특성을 제시함으로써 운반 시 운영절차의 개발을 위한 기술적 근거 수립에 도움이 되고자 한다.

Review of Instant Release Fractions of Long-lived Radionuclides in CANDU and PWR Spent Nuclear Fuels Under the Geological Disposal Conditions

  • Choi, Heui Joo;Koo, Yang-Hyun;Cho, Dong-Keun
    • 방사성폐기물학회지
    • /
    • 제20권2호
    • /
    • pp.231-241
    • /
    • 2022
  • Several countries, including Korea, are considering the direct disposal of spent nuclear fuels. The radiological safety assessment results published after a geological repository closure indicate that the instant release is the main radiation source rather than the congruent release. Three Safety Case reports recently published were reviewed and the IRF values of seven long-lived radionuclides, including relevant experimental results, were compared. According to the literature review, the IRF values of both the CANDU and low burnup PWR spent fuel have been experimentally measured and used reasonably. In particular, the IRF values of volatile long-lived nuclides, such as 129I and 135Cs, were estimated from the FGR value. Because experimental leaching data regarding high burnup spent nuclear fuels are extremely scarce, a mathematical modelling approach proposed by Johnson and McGinnes was successfully applied to the domestic high burnup PWR spent nuclear fuel to derive the IRF values of iodine and cesium. The best estimate of the IRF was 5.5% at a discharge burnup of 55 GWd tHM-1.

사용후핵연료의 장기 건식 건전성 성능과 주요 열화 기구에 관한 고찰 (Review on Spent Nuclear Fuel Performance and Degradation Mechanisms under Long-term Dry Storage)

  • 김주성;국동학;심지형;김용수
    • 방사성폐기물학회지
    • /
    • 제11권4호
    • /
    • pp.333-349
    • /
    • 2013
  • 최근 국내에서도 원전 부지 내에 건설된 습식저장조의 용량이 곧 포화될 것으로 예상되어 사용후핵연료의 건식저장에 관한 논의가 활발하다. 이 논문에서는 앞으로 다양하게 논의될 저장시스템의 안전성과 함께 장기 건식저장 시 발생하는 사용후핵연료의 특성 및 건전성 변화에 대해 이제까지 국내외에서 연구 보고된 내용들을 면밀히 검토하고 향후 추구해야 할 연구방향을 제시하고자 하였다. 조사 결과 건식저장 기간 동안 진행될 수 있는 여러 피복관 열화기구 중에서 가장 대표적인 기구는 크립 변형과 수소화물에 의한 영향이었으며, 이들이 사용후핵연료 장기 건식저장 시 규제기술기준의 주요 근간을 이루고 있는 것으로 분석되었다. 한편 과거에는 피복관의 크립 변형이 가장 중요한 열화기구로 평가되었으나, 최근의 연구 결과를 통해 수소화물에 의한 영향이 더 심각한 것으로 드러났고 이는 미국의 규제기준과 새로운 온도 범위를 제시하고 있는 일본의 규제기준에서 확인할 수 있었다. 그러나, 아직까지 수소화물에 의한 영향이 발생하는 응력과 온도 조건을 명확히 규명할 수 있는 연구 자료가 충분하지 못하며, 나아가 사용후핵연료의 취급 시 거동에 대한 연구도 지속적으로 수행해야 할 부분으로 드러났다. 따라서 국내 사용후핵연료 특성에 맞는 건식저장조건을 수립하기 위해서는 국내에서도 본격적인 연구를 통해 이들 자료에 대한 충분한 생산과 평가 및 분석이 뒤따라야 할 것으로 판단된다.

Criticality effect according to axial burnup profiles in PWR burnup credit analysis

  • Kim, Kiyoung;Hong, Junhee
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1708-1714
    • /
    • 2019
  • The purpose of the critical evaluation of the spent fuel pool (SFP) is to verify that the maximum effective multiplication factor ($K_{eff}$) is less than the critical safety limit at 100% stored condition of the spent fuel with the maximum reactivity. At nuclear power plants, the storage standard of spent fuel, ie, the loading curve, is established to prevent criticality from being generated in SFP. Here, the loading curve refers to a graph showing the minimum discharged burnup versus the initial enrichment of spent fuel. Recently, US NRC proposed the new critical safety assessment guideline (DSS-ISG-2010-01, Revision 0) of PWR SFPs and most of utilities in US is following it. Of course, the licensed criterion of the maximum effective multiplication factor of SFP remains unchanged and it should be less than 0.95 from the 95% probability and the 95% confidence level. However, the new guideline is including the new evaluation methodologies like the application of the axial burnup profile, the validation of depletion and criticality code, and trend analysis. Among the new evaluation methodologies, the most important factor that affects $K_{eff}$ is the axial burnup profile of spent fuel. US NRC recommends to consider the axial burnup profiles presented in NUREG-6801 in criticality analysis. In this paper, criticality effect was evaluated considering three profiles, respectively: i) Axial burnup profiles presented in NUREG-6801. ii) Representative PWR axial burnup profile. iii) Uniform axial burnup profile. As the result, the case applying the axial burnup profiles presented in NUREG-6801 showed the highest $K_{eff}$ among three cases. Therefore, we need to introduce a new methodology because it can be issued if the axial burnup profiles presented in NUREG/CR-6801 are applied to the domestic nuclear power plants without any other consideration.