• Title/Summary/Keyword: Dome Part

Search Result 77, Processing Time 0.027 seconds

A Study on the Dome Plan of S. M. del Fiore Church of F. Brunelleschi (브루넬레스키의 산타 마리아 델 휘오레 교회의 돔계획에 관한 연구)

  • Kim, Seok-Man
    • Journal of architectural history
    • /
    • v.21 no.5
    • /
    • pp.19-32
    • /
    • 2012
  • The purpose of this paper is a study on the dome plan of S. M. del Fiore Church of F. Brunelleschi. The results of study are as follows: 1. The planning of floor, elevation and cross section plan of S. M. del Fiore church is basically planned by each other correlation. In particular, the octangular form of geometrical standard which is formed with altar as the center at the crossing part is important component elements which is decided by not only the dome, but form and size of the drum and floor plan form of the lantern 2. The dome which has been planned by F. Brunelleshi has completed the new dome, preserving gothic thought intended by the church plan after study on architecture of ancient Rome with Pantheon. And the dome which is a main space of church through all aspects of plan, structure, function and construction about the dome is a opportunity in the beginning of Renaissance architecture which is a new epoch and a turning point of architecture on various point of view. 3. The dome which is constructed by F. Brunelleshi has been planned through the innovative solution by the refusal of traditional semicircle form dome, centering use and creation double-shell structure form for the first time in history. And the construction of dome has been solved with the invention of various construction equipments and machineries, the stone rib planned for connection and reinforcement about shells of the octangular form, the support method for reduction the gravity of bricklayers work and the brick work of nock-patterned shape which is masonry construction method of the architecture of ancient Rome.

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -With Application to an Static Behavior Analysis of Axisymmetric Shell- (탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석 (III) -비선형 정적거동을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.3
    • /
    • pp.72-82
    • /
    • 1997
  • In all inelastic deformations time rate effects are always present to some degree. Whether or not their exclusion has a significant influence on the prediction of the material behaviour depends upon several factors. In the study of structural components under static loading conditions at normal temperature it is accepted that time rate effects are generally not important. However metals, especially under high temperatures, exhibit simultaneously the phenomena of creep and viscoplasticity. In this study, elastoplastic and elasto-viscoplastic models include nonlinear geometrical effects were developed and several numerical examples are also included to verify the computer programming work developed here in this work. Comparisons of the calculated results, for the elasto-viscoplastic analysis of an internally pressurised thick cylinder under plane strain condition, have shown that the model yields excellent results. The results obtained from the numerical examples for an elasto-viscoplastic analysis of the Nuclear Reinforced Concrete Containment Structure(NRCCS) subjected to an incrementally applied internal pressure were summarized as follows : 1. The steady state hoop stress distribution along the shell layer of dome and dome wall junction part of NRCCS were linearly behave and the stress in interior surfaces was larger than that in exterior. 2.However in the upper part of the wall of NRCCS the steady state hoop stress in creased linearly from its inner to outer surfaces, being the exact reverse to the previous case of dome/dome-wall junction part. 3.At the lower part of wall of NRCCS, the linear change of steady state hoop stress along its wall layer began to disturb above a certain level of load increase.

  • PDF

Numerical simulation of natural convection around the dome in the passive containment air-cooling system

  • Chunhui Dong;Shikang Chen;Ronghua Chen;Wenxi Tian;Suizheng Qiu;G.H. Su
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2997-3009
    • /
    • 2023
  • The Passive containment Air-cooling System (PAS) can effectively remove the decay heat of the modular small nuclear reactor after an accident. The details of natural convection around the dome, which is a key part of PAS, were investigated numerically in the present study. The thermal dynamics around the dome were studied through the temperature, pressure and velocity contours and the streamlines. Additionally, the formation of the buoyant plume at the top of the dome was investigated. The results show that with the increase of Ra, the lift-off point moves toward the bottom of the dome, and the eddy under the buoyant plume grows larger gradually, which enhances the heat transfer. And the heat transfer along the dome surface with different truncation angles was investigated. As the angle increases, the heat transfer coefficient becomes stronger as well. Consequently, a newly developed heat transfer correlation considering the influence of truncation angle for the dome is proposed based on the simulated results. This study could provide a better understanding of natural convection around the dome of PAS and the proposed correlation could also offer more predictive value in the improvement of nuclear safety.

Optimal Thickness Design of Ellipsoidal and Tori-Spherical Pressure Vessel Domes (타원형 및 토리-구형 압력용기도옴의 두께 최적화설계)

  • 이영신;김영완;조원만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.707-715
    • /
    • 1994
  • This study presents thickness optimization for the pressure vessel domes subject to internal pressure and axial force simultaneously. The considered typical pressure vessel domes are ellipsoidal and tori-spherical domes with skirt and nozzle part. These pressure vessel domes under loading have higher stress concentration on geometric discontinuity parts. Therefore, thickness optimization of axi-symmetric pressure vessel domes is essentially concerned on minimizing this stress concentration. The objective function is minimization of weight of pressure vessel dome. The design variable is thickness of dome and cylinder. Considered constraint is Von Mises equivalent stress. In the optimization procedure, ANSYS code is used. The equivalent and hoop stress of original shape domes are compared with those of optimal shape domes. And optimal thicknesses for pressure vessel domes are presented.

A Study on Fracture Characteristic of Ceramic Dome Using Shock Tube (충격파관을 이용한 세라믹 돔의 파괴 특성에 관한 연구)

  • Hwang, Kwon-Tae;Kim, Jae-Hoon;Lee, Young-Shin;Park, Jong-Ho;Kwon, Sun-Guk;Song, Kee-Hyuck;Yoon, Su-Jin;Lee, Gi-Chun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1274-1278
    • /
    • 2009
  • Fracture characteristics for plate and dome shapes of glass filled ceramics using shock tube were carried out. Glass filled ceramics have been considered as a promising candidate material for the dome port cover of air breathing engine. This part of the air breathing engine has an important role as separated membrane between combustion and external air, and needs the frangible characteristics that the particles of fractured glass filled ceramics should not affect the internal components of combustion. The objectives of this study are to evaluate the fracture pressures for various thicknesses and diameters of shock impact area. Also fracture phenomena of separated membrane using a shock tube compare with analytical method. The experimental apparatus consists of a driver, a driven section and a dump tank. The used material is glass filled ceramic made from Corning company. Specimens have the thickness of 3, 4.5 and 6mm. It is expected that the results obtained from this study can be used in the basic data for the dome port cover design of an air breathing engine.

A Report on Gneiss Dome in the Hongseong Area, Southwestern Margin of the Gyeonggi Massif (경기육괴 남서 연변부 홍성지역에 발달하는 편마암 돔에 대한 보고)

  • Park, Seung-Ik;Kim, Sung Won
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.315-323
    • /
    • 2016
  • This study reports a gneiss dome in the Hongseong area, southwestern margin of the Gyeonggi massif. This gneiss dome, named here as 'Oseosan dome' because it is located around the Oseosan, the highest peak along the western coastal area, is composed mainly of the Neoproterozoic to Paleozoic ortho- and paragneiss, mafic metavolcanic rock, and metadolerite. Migmatization affected these rock units, in which leucocratic(granitic) materials derived from anatexis frequently occur as patch and vein parallel to or cutting through internal foliation. The Oseosan dome shows overall concentric geometry and outward-dipping internal foliation, but also partly complicatedly changeable or inward-dipping foliation. Taking available petrological and geochronological data into account, the Oseosan dome is interpreted to be exhumed quickly into the upper crustal level during the Late Triassic, accompanied in part with anatexis and granite intrusion. In addition, extensional shear zone intruded by the Late Triassic synkinematic granite and sedimentary basin have been reported around the Oseosan dome. These evidences possibly suggest that the Oseosan dome formed in closely associated with the Late Triassic extensional movement and diapiric flow. Alternatively, 1) thrust- or reverse fault-related doming or 2) interference between independent folds during structural inversion of the Late Traissic to Middle Jurassic sedimentary basin can be also considered as dome-forming process. However, considering the northern limb of the Oseosan dome, cutting by the Late Traissic granite, and the southern limb, cutting by contractional fault reactivated after the Middle Jurassic, it is likely that the domal structure formed during or prior to the Late Triassic.

Dome Shape Design and Performance Evaluation of Composite Pressure Vessel (복합재 압력용기의 돔 형상 설계 및 성능 평가)

  • Hwang, Tae-Kyung;Park, Jae-Beom;Kim, Hyoung-Geun;Doh, Young-Dae;Moon, Soon-Il
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.31-41
    • /
    • 2007
  • Dome shape design methods of Filament Winding (FW) composite pressure vessel, which can suggest various dome contour according to the external loading conditions, were investigated analytically and numerically. The performance indices(PV/W) of the pressure vessels with same cylinder radius and boss opening but different dome shape were evaluated by finite element analysis under the internal pressure loading condition. The analysis results showed that as the dome shape becomes flat, the performance index decreases significantly due to the reduced burst pressure. Especially, for the case of the high value of the parameter ro, the ratio between the radii of the cylinder part and the boss opening, the flat dome is disadvantageous in the aspect of the weight reduction, and additional reinforcing dome design technique should be required to increase the burst pressure. For example, above ro=0.54 condition, the dome shape change according to the loading condition could cause the low burst pressure and increase of composite weight in dome region and is not recommendable except for the special case that maximum inner volume or sufficient space between skirt and dome is the primary design objective. However, at ro=0.35, the dome shape change brings not so significant differences in the performance of FW vessel.

Fracture Behavior of Plate Shape Ceramic using Compressive Shock Wave (압축 충격파를 이용한 평판형상 세라믹의 파괴거동)

  • Hwang, Kwon-Tae;Kim, Jae-Hoon;Lee, Young-Shin;Park, Jong-Ho;Song, Kee-Hyuck;Yoon, Soo-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.103-106
    • /
    • 2009
  • Fracture characteristics of plate shape using shock tube for glass filled ceramics was carried out. Glass filled ceramics have been considered as a promising candidate material for the dome port cover of air breathing engine. This part of the air breathing engine has an important role separating solid and liquid fuel, and needs the frangible characteristics that the fracture of a part should not affect the internal components of combustion. The objectives of this study are to evaluate the fracture pressures for various thicknesses and diameters of shock impact area. Also fracture phenomena of separated membrane using a shock tube are observed. The experimental apparatus of shock tube consists of a driver, a driven section and a dump tank. The used material is glass filled ceramic made from Corning company. Specimens are used 3, 4.5 and 6mm thickness. Also diameters of shock wave area are chosen 70, 60 and 50 mm. It is expected that the results obtained from this study can be used in the basic data for the dome port cover design of an air breathing engine.

  • PDF

Study on Buckling-Characteristics of Single-Layer Latticed Domes subject to Initial Imperfection (II) (Part II In the case of Pinned-Joint) (단층래티스돔의 좌굴특성에 미치는 형상초기부정에 관한 연구 (II) (제II보 핀접합의 경우))

  • 정환목;권영환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.74-78
    • /
    • 1993
  • Compared with rigid-jointed latticed dome, in pinned-joint latticed dome, results of Ref.1 showed reduction of buckling strength by decline of junction's rotational rigidity. Moreover, with decline of junction's rotational rigidity, geometrical initial imperfection incurs more and more reduction of buckling-strength. This study, subsequently the case of rigid-joint domes, is aimed at analyzing buckling-characteristics of pinned-joint single-layer latticed domes with triangular network subjected to initial imperfection.

  • PDF

The Characteristics of Elasto-Plastic Behaviour for the Latticed Dome Structures (래티스 돔 구조물의 탄소성 거동 특성에 관한 연구)

  • Park, Chul-Ho;Han, Sang-Eul;Yang, Jea-Guen
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.53-62
    • /
    • 2004
  • A single layer latticed dome is one of the most efficient structures because of its low specivic gravity. For easily analyzing of a single layer latticed dome, joint system is assumed to be pin or rigid joint. However, its joint uses ball whose system has intermediate properties of pin and rigid joint. Therefore this study has a grasp of bending rigidity, stress and mechanical properties through experimental and analyzing method of the bolt inserted ball joint. To analyze the stress of bolt and sleeve, this study uses through 3D elastic contact and cubic element, and then the ball and the bolt are perfectly connected for easily analyzing Compared experimental results to F.E.M, each specimen has an error of less than 12 percent. In the results of stress distribution through F.E.M, stress occurs from bottom of bolt to top of sleeve, and most of tension appears on the bolt, also compression occurs from upper parts of the bolt to the sleeve. The assumption of bending stiffness in ball joint is well known that bolt resists only tension and upper sleeve resiss compression. The results of experiment and analysis have $7{\sim}56%$ error, assuring that upper part of bolt occurs of partial compression. In the result of modified assumption have $4{\sim}20%$ error.

  • PDF