• Title/Summary/Keyword: Dome

Search Result 789, Processing Time 0.023 seconds

Forming of Dome and Inlet Parts of a High Pressure CNG Vessel by the Hot Spinning Process (열간 스피닝 공정을 통한 CNG 고압용기의 돔 및 입구 부 성형)

  • Lee, Kwang O;Park, Gun Young;Kwak, Hyo Seo;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.887-894
    • /
    • 2016
  • The CNG pressure vessel is manufactured by a deep drawing and ironing (D.D.I) process for forming cylinder parts, followed by a spinning process for formation of the dome part. However, studies on the buckling phenomenon of the dome part and formation of the inlet part have not been performed yet, and the CNG pressure vessel is produced by the experience of the field engineers and the trial and error method. In this study, buckling phenomenon during the spinning process was predicted by comparing critical buckling loads obtained through theoretical analysis with axial loads from the FEA, and a method for preventing buckling of the dome part was proposed by employing commercial software (Forge NxT 1.0.2). Also, to form the inlet part, forming loads of the roller at contact point between the roller and the dome part were analyzed according to radii of the dome part, and the inlet part was formed by controlling the radius of the dome part.

A Study on the Stability of the Single-Layer Latticed Dome during Erection Using the Step-Up Method (Step-Up 공법에 의한 단층래티스돔의 시공시 안정성 연구)

  • Koo, Choong-Mo;Jung, Hwan-Mok;Kim, Cheol-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.109-118
    • /
    • 2012
  • The large-space single-layer lattice dome is relatively simpler in terms of the arrangement of the various framework members and of the design of the junction than the multi-layered lattice dome, can reduce the numbers and quantity of the framework members, and has the merit of exposing the beauty of the framework as it stands. The single-layer lattice dome, however, requires a stability investigation of the whole structure itself, along with an analysis of the stress of the framework members, because an unstable phenomenon called "buckling" occurs when its weight reaches critical levels. Many researchers have systematically conducted researches on the stability evaluation of the single-layer lattice dome. No construction case of a single-layer lattice dome with a 300-m-long span, however, has yet been reported anywhere in the world. The large-space dome structure is difficult to erect due to the gigantic span and higher ceiling compared with other common buildings, and its construction cost is generally huge. The method of erecting a structure causes major differences in the construction cost and period. Therefore, many researchers have been conducting various researches on the method of erecting such structure. The step-up method developed by these authors can reduce the construction cost and period to a great extent compared with the other general methods, but the application of this method inevitably requires the development of system supports in the center section as well as pre-existing supports in the boundary sections. In this research, the safety during the construction of a single-layer lattice dome with 300-m-long span using pre-existing materials was examined in the aspect of structural strength, and the basic data required for manufacturing the supports in the application of the step-up method developed by these authors during the erection of the roof structure were obtained.

A Study on the Dynamic Instability Characteristics of Latticed Dome Under STEP Excitations (STEP 하중을 받는 래티스 돔 구조물의 동적 구조불안정 특성에 관한 연구)

  • Kim, Seung-Deog;Jang, Je-Pil
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.59-68
    • /
    • 2012
  • The space frame structure is one of the large span structural system consisting of longitudinal and latitudinal members. The members are connected in three dimension. A space frame structure has high stiffness with a structure resisting external forces in steric conformation. According to many structural conditions, structural stability problems in the space frame are determined and considered very important. This study seeks to understand the space frame collapse mechanism using the 2-free nodes truss model in order to examine static structural instability characteristics of the latticed dome. According to geometrical shape, the star dome, parallel lamella dome and three way grid dome were selected as models. The models were examined for characteristics of instability under STEP Excitations behavior according to rise-span ratio(${\mu}$) and shape imperfection.

DESIGN AND STRUCTURAL ANALYSIS OF DOME ENCLOSURE FOR TRACKING ARTIFICIAL SPACE OBJECTS (인공우주물체 추적용 완전 개폐형 돔의 설계 및 구조해석)

  • Seol, K.H.;Kim, S.J.;Jang, M.;Min, S.W.;Mun, B.S.;Baek, K.M.
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.211-217
    • /
    • 2007
  • We have been making dual dome enclosures which are useful to track artificial space objects at SSNT (Space Science and Technology Lab.) Kyung Hee University. We verified the safety of the dome enclosures using basic design and structure analyses before manufacturing them, and then performed an optimization analysis for economic and safe systems. The dome enclosure has a fully-open type structure to smoothly operate a telescope made in the style of altazimuth mount with very fast tracking. It is also designed to be safe against extreme weather conditions. The general structure of the observatory system consists of the dual dome enclosures at the top of a container. For the structural analyses, we consider the following two methods: (1) gravitational sustain analysis - how the structure supporting the dome withstand the weight of the dome, and (2) wind load analysis that considers the effect of the wind velocity at the region where the observatory is located. The result of overall deformation is found to be less than 0.551mm and the result of equivalent stress is found to be 20.293Mpa, indicating that the dual dome system is reasonably designed. This means structurally to be safe.

Numerical simulation of natural convection around the dome in the passive containment air-cooling system

  • Chunhui Dong;Shikang Chen;Ronghua Chen;Wenxi Tian;Suizheng Qiu;G.H. Su
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2997-3009
    • /
    • 2023
  • The Passive containment Air-cooling System (PAS) can effectively remove the decay heat of the modular small nuclear reactor after an accident. The details of natural convection around the dome, which is a key part of PAS, were investigated numerically in the present study. The thermal dynamics around the dome were studied through the temperature, pressure and velocity contours and the streamlines. Additionally, the formation of the buoyant plume at the top of the dome was investigated. The results show that with the increase of Ra, the lift-off point moves toward the bottom of the dome, and the eddy under the buoyant plume grows larger gradually, which enhances the heat transfer. And the heat transfer along the dome surface with different truncation angles was investigated. As the angle increases, the heat transfer coefficient becomes stronger as well. Consequently, a newly developed heat transfer correlation considering the influence of truncation angle for the dome is proposed based on the simulated results. This study could provide a better understanding of natural convection around the dome of PAS and the proposed correlation could also offer more predictive value in the improvement of nuclear safety.

Seismic Response Control of Dome Structure Subjected to Multi-Support Earthquake Excitation (다중지점 지진하중을 받는 돔 구조물의 지진응답 제어)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.4
    • /
    • pp.89-96
    • /
    • 2014
  • Spatial structures as like dome structure have the different dynamic characteristics from general rahmen structures. Therefore, it is necessary to accurately analyze dynamic characteristics and effectively control of seismic response of spatial structure subjected to multi-supported excitation. In this study, star dome structure that is subjected to multi-supported excitation was used as an example spatial structure. The response of the star dome structure under multiple support excitation are analyzed by means of the pseudo excitation method. Pseudo excitation method shows that the structural response is divided into two parts, ground displacement and structural dynamic response due to ground motion excitation. And the application of passive tuned mass damper(TMD) to seismic response control of star dome structures has been investigated. From this numerical analysis, it is shown that the seismic response of spatial structure under multiple support seismic excitation are different from those of spatial structure under unique excitation. And it is reasonable to install TMD to the dominant points of each mode. And it is found that the passive TMD could effectively reduce the seismic responses of dome structure subjected to multi-supported excitation.

Topology and geometry optimization of different types of domes using ECBO

  • Kaveh, A.;Rezaei, M.
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.1-25
    • /
    • 2016
  • Domes are architectural and elegant structures which cover a vast area with no interrupting columns in the middle, and with suitable shapes can be also economical. Domes are built in a wide variety of forms and specialized terms are available to describe them. According to their form, domes are given special names such as network, lamella, Schwedler, ribbed, and geodesic domes. In this paper, an optimum topology design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The network, lamella, ribbed and Schwedler domes are studied to determine the optimum number of rings, the optimum height of crown and tubular sections of these domes. The minimum volume of each dome is taken as the objective function. A simple procedure is defined to determine the dome structures configurations. This procedure includes calculating the joint coordinates and element constructions. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Constitution). The wind loading act on domes according to ASCE 7-05 (American Society of Civil Engineers). This paper will explore the efficiency of various type of domes and compare them at the first stage to investigate the performance of these domes under different kind of loading. At the second stage the wind load on optimum design of domes are investigated for Schwedler dome. Optimization process is performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating optimal design for domes.

Analysis of External Peak Pressure Coefficients for Cladding in Elliptical Retractable Dome Roof by Wind Tunnel Test (풍동 실험을 통한 타원형 개폐식 돔 지붕의 외장재용 풍압 계수 분석)

  • Lee, Jong-Ho;Kim, Yong-Chul;Cheon, Dong-Jin;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 2020
  • This study investigates the wind pressure characteristics of elliptical plan retractable dome roof. Wind tunnel experiments were performed on spherical dome roofs with varying wall height-span ratios (0.1~0.5) and opening ratios (0%, 10%, 30% and 50%), similar to previous studies of cirular dome roofs. In previous study, wind pressure coefficients for open dome roofs have been proposed since there are no wind load criteria for open roofs. However, in the case of Eeliptical plan retractable dome roof, the wind pressure coefficient may be largely different due to the presence of the longitudinal direction and transverse direction. The analysis results leads to the exceeding of maximum and minimum wind pressure coefficients KBC2016 code.

Reinforcement Effects of Buckling Member for Single-layer Latticed Dome (단층래티스 돔의 좌굴부재 보강효과에 관한 연구)

  • Jung, Hwan-Mok;Yoon, Seok-Ho;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.45-52
    • /
    • 2016
  • The single layer latticed domes have attracted many designers and researchers's attention all of the world, because these structures as spatial structure are of great advantage in not only mechanical rationality but also function, fabrication, construction and economic aspect. But single layer latticed domes are apt to occur the unstable phenomena that are called "buckling" because of the lack of strength of members, instability of structural shape, etc. In the case of latticed dome, there are several types of buckling mode such as overall buckling, local buckling, and member buckling according to the shape of dome, section type of member, the size of member, junction's condition of member and so on. There are many methods to increase the buckling strength of the single layer latticed dome, that is, with the change of geometrical shape of dome, the reinforcement of buckled member, etc. Therefore, the purpose of this study is to verify the reinforcement effect of buckled member when designers reinforce the buckled member to increase the buckling strength of single layer latticed dome with 3-way grid.

A Report on Gneiss Dome in the Hongseong Area, Southwestern Margin of the Gyeonggi Massif (경기육괴 남서 연변부 홍성지역에 발달하는 편마암 돔에 대한 보고)

  • Park, Seung-Ik;Kim, Sung Won
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.315-323
    • /
    • 2016
  • This study reports a gneiss dome in the Hongseong area, southwestern margin of the Gyeonggi massif. This gneiss dome, named here as 'Oseosan dome' because it is located around the Oseosan, the highest peak along the western coastal area, is composed mainly of the Neoproterozoic to Paleozoic ortho- and paragneiss, mafic metavolcanic rock, and metadolerite. Migmatization affected these rock units, in which leucocratic(granitic) materials derived from anatexis frequently occur as patch and vein parallel to or cutting through internal foliation. The Oseosan dome shows overall concentric geometry and outward-dipping internal foliation, but also partly complicatedly changeable or inward-dipping foliation. Taking available petrological and geochronological data into account, the Oseosan dome is interpreted to be exhumed quickly into the upper crustal level during the Late Triassic, accompanied in part with anatexis and granite intrusion. In addition, extensional shear zone intruded by the Late Triassic synkinematic granite and sedimentary basin have been reported around the Oseosan dome. These evidences possibly suggest that the Oseosan dome formed in closely associated with the Late Triassic extensional movement and diapiric flow. Alternatively, 1) thrust- or reverse fault-related doming or 2) interference between independent folds during structural inversion of the Late Traissic to Middle Jurassic sedimentary basin can be also considered as dome-forming process. However, considering the northern limb of the Oseosan dome, cutting by the Late Traissic granite, and the southern limb, cutting by contractional fault reactivated after the Middle Jurassic, it is likely that the domal structure formed during or prior to the Late Triassic.