• Title/Summary/Keyword: Domain switching

Search Result 178, Processing Time 0.038 seconds

A Brief Review on Polarization Switching Kinetics in Fluorite-structured Ferroelectrics (플루오라이트 구조 강유전체 박막의 분극 반전 동역학 리뷰)

  • Kim, Se Hyun;Park, Keun Hyeong;Lee, Eun Been;Yu, Geun Taek;Lee, Dong Hyun;Yang, Kun;Park, Ju Yong;Park, Min Hyuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.330-342
    • /
    • 2020
  • Since the original report on ferroelectricity in Si-doped HfO2 in 2011, fluorite-structured ferroelectrics have attracted increasing interest due to their scalability, established deposition techniques including atomic layer deposition, and compatibility with the complementary-metal-oxide-semiconductor technology. Especially, the emerging fluorite-structured ferroelectrics are considered promising for the next-generation semiconductor devices such as storage class memories, memory-logic hybrid devices, and neuromorphic computing devices. For achieving the practical semiconductor devices, understanding polarization switching kinetics in fluorite-structured ferroelectrics is an urgent task. To understand the polarization switching kinetics and domain dynamics in this emerging ferroelectric materials, various classical models such as Kolmogorov-Avrami-Ishibashi model, nucleation limited switching model, inhomogeneous field mechanism model, and Du-Chen model have been applied to the fluorite-structured ferroelectrics. However, the polarization switching kinetics of fluorite-structured ferroelectrics are reported to be strongly affected by various nonideal factors such as nanoscale polymorphism, strong effect of defects such as oxygen vacancies and residual impurities, and polycrystallinity with a weak texture. Moreover, some important parameters for polarization switching kinetics and domain dynamics including activation field, domain wall velocity, and switching time distribution have been reported quantitatively different from conventional ferroelectrics such as perovskite-structured ferroelectrics. In this focused review, therefore, the polarization switching kinetics of fluorite-structured ferroelectrics are comprehensively reviewed based on the available literature.

Effects of Top Electrode Thickness on Ferroelectric Properties of Preferentially Oriented $Pb(Zr, Ti)O_3$Thin Films (상부전극 두께가 우선방위를 갖는 $Pb(Zr, Ti)O_3$ 박막의 강유전체 특성에 미치는 영향)

  • 고가연;이은구;이종국;박진성;김선재
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1035-1039
    • /
    • 1999
  • Ferroelectric properties and reliability characteristics of(111) and (100) preferentially oriented tetragonal Pb(Zr0.2Ti0.8)O3 (PZT) thin film capacitors have been investigated as a function of the top electrode thickness. The (111) preferentially oriented film exhibits 180$^{\circ}$domain switching process with better squareness of hysterisis loop and abrupt change of small singal capacitance-voltage comparing to the (100) preferentially oriented film having 90$^{\circ}$ domain switching process. The domain swithcing process of tetragonal phase PZT is different from that of rhobohedral phase. The film with thinner top electrode shows less initial switching polarization due to less compressive stress but it exhibits better endurance characteristics due to enhancing partial switching region.

  • PDF

Influence of Illumination on Domain Switching and Photovoltaic Current in Poled $(Pb_{1x}La_x)TiO_3$ Freeoelectric Ceramics

  • Park, Si-Kyung;Park, Dong-Gu;Kim, Sung-Ryul
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.267-271
    • /
    • 2000
  • The influence of photoexcited nonequilibrium carriers on domain switching and photovoltaic current was investigated in two kinds of poled La-modified PbTiO$_3$ferroelectric ceramics, (Pb$_{0.85}$La$_{0.15}$)TiO$_3$and (Pb$_{0.76}$La$_{0.24}$)TiO$_3$, under illumination in the absence of external electric field. Both photovoltaic current and cumulative AE event counts increased with illumination time. The observed nonsteady-state photovoltaic current could be explained on the basis of the cycles of a series of physical events consisting the establishment of space charge field by photoexcited carriers trapped at the grain boundaries, the photoinduced domain switching, and the increase in the remanent polarization. An analysis of energy distribution of the observed AE signals also revealed that the space charge field in (Pb$_{0.85}$La$_{0.15}$)TiO$_3$allowed both 18$0^{\circ}C$ and 90$^{\circ}$domains to be switched during illumination.

  • PDF

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • O, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF

Nonequilibrium Domain Configurations Undergoing Large Angle Rotations in Mesoscopic Magnetic Thin Film Elements (retracted)

  • Choi, B.C.;Hong, Y.K.;Rudge J.;Donohoe G.;Xiao Q.F.
    • Journal of Magnetics
    • /
    • v.11 no.2
    • /
    • pp.61-65
    • /
    • 2006
  • The physical origin of complex dynamic domain configuration in nonequilibrium magnetic systems with mesoscopic length scales has been studied. An increasing complexity in the spatial feature of the evolution is found to accompany the increasing reversal speed, when a ferromagnetic element is driven by progressively faster switching fields applied antiparallel to the initial magnetization direction. As reversal rates approach the characteristic precession frequencies of spin fluctuations, the thermal energy can boost the magnetization into local configurations which are completely different from those experienced during quasistatic reversal. The sensitive dependence of the spatial pattern on switching speed can be understood in terms of a dynamic exchange interaction of thermally excited spins; the coherent modulation of the spins is strongly dependent on the rise time of switching pulses.

Effect of Electric Fields on Crack Kinking in Ferroelectrics (전기장이 강유전체 내의 균열킹크에 미치는 영향)

  • Lee, Jong-Sik;Beom, Hyeon-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1206-1210
    • /
    • 2003
  • Effect of transverse electric field on crack kinking in ferroelectric ceramics subjected to purely electric loading is investigated. It is shown that the shape and size of the domain switching zone depends strongly on the direction of the applied electric field as well as the ratio of the transverse electric field to the coercive electric field. Under small-scale conditions, mode I and II stress intensity factors induced by ferroelectric domain switching are numerically obtained. The crack kinking in ferroelectrics is also discussed.

  • PDF

Effect of Transverse Electric Fields on Fracture Behavior of Ferroelectric Ceramics (횡전기장이 강유전체 세라믹의 파괴거동에 미치는 영향)

  • Lee Jong Sik;Beom Hyeon Gyu;Jeong Kyoung Moon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.120-125
    • /
    • 2005
  • Effect of transverse electric fields on fracture behavior in ferroelectric ceramics under purely electrical loading is investigated. It is shown that the shape and size of the domain switching zone depend strongly on the ratio of the transverse electric field to the coercive electric field as well as the direction of the applied electric field. Under small-scale conditions, the crack-tip mode I and II stress intensity factors induced by ferroelectric domain switching are numerically obtained. The crack kinking in ferroelectric ceramics is also discussed.

Domain Switching Toughening of Ferroelectric Ceramics Subjected to Electric Fields (전기장을 받는 강유전체 세라믹의 분역회전 인성화)

  • Jeong, Kyoung-Moon;Beom, Hyeon-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.577-584
    • /
    • 2003
  • A crack with growth in ferroelectric ceramics under purely electric loading is analyzed. The crack tip stress intensity factor for the growing crack under small-scale conditions is evaluated by employing the model of nonlinear domain switching. The crack tip stress intensity factor increases or decreases with crack growth, depending on the electrical nonlinear behavior and the direction of an applied electric field. It is shown that the ferroelectric material can be either toughened or weakened as the crack grows. The steady state crack growth in ferroelectric ceramics is also discussed.

Póincare Sphere Analysis of the Pretilt Angle Effect on the Viewing Angle of a Single-Domain FFS Liquid-Crystal Mode

  • Lee, Dong-Jin;Oh, Seong-Woo;Shim, Gyu-Yeop;Choi, Jun-Chan;Lee, Joun-Ho;Kim, Byeong Koo;Kim, Hak-Rin
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.156-164
    • /
    • 2016
  • We demonstrated the pretilt angle effect on the viewing angle properties of a single-domain fringe-field switching (FFS) liquid crystal (LC) mode. By performing the Póincare sphere analysis, we investigated, in detail, the origin of the viewing angle asymmetry that exists in the single-domain FFS LC mode both in the field-on and field-off states. Using this analysis, we confirmed that the pretilt angle reduces the viewing angle symmetry in the single-domain FFS LC mode. Finally, we examined the effect of a zero pretilt angle on the viewing angle symmetry by evaluating real single-domain FFS LC cells.

Multi-domain Dialog Framework using Domain Switching Strategy (영역 전환 전략을 사용한 다 영역 대화 프레임워크)

  • Choi, Wonseok;Kang, Sangwoo;Seo, Jungyun
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.152-154
    • /
    • 2010
  • 다 영역 대화 시스템 개발에서는 영역 확장이 쉬워야 하며 처리하는 대화 영역이 늘어나더라도 대화 과정에서 사용자 편의성을 유지해야 하는 점이 중요하다. 본 논문에서는 이런 특성을 가지는 다 영역 대화 시스템을 작성하기 위한 프레임워크를 제안한다. 이 프레임워크는 공통의 인터페이스를 구현하는 영역 전문가(Domain Expert) 기반으로 동작하므로 영역 확장이 용이하다. 또한 진행 중이던 대화를 종료하지 않은 채 타 대화 영역으로 이동하는 영역 전환(Domain Switching) 현상은 다 영역 대화를 복잡하게 만드는 주요한 원인 중 하나로써 이를 효과적으로 관리할 수 있는 영역 전환 전략을 사용하여 사용자 편의성을 확보하였다.

  • PDF