• Title/Summary/Keyword: Domain detection

Search Result 897, Processing Time 0.033 seconds

Ultrasonic guided waves-based fatigue crack detection in a steel I-beam: an experimental study

  • Jiaqi Tu;Xian Xu;Chung Bang Yun;Yuanfeng Duan
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.13-27
    • /
    • 2023
  • Fatigue crack is a fatal problem for steel structures. Early detection and maintenance can help extend the service life and prevent hazards. This paper presents the ultrasonic guided waves-based (UGWs-based) fatigue crack detection of a steel I-beam. The semi-analytical finite element model has been built to obtain the wave propagation characteristics. Damage indices in both time and frequency domains were analyzed by considering the characteristic variations of UGWs including the amplitude, phase angle, and wave packet energy. The pulse-echo and pitch-catch methods were combined in the detection scheme. Lab-scale experiments were conducted on welded steel I-beams to verify the proposed method. Results show that the damage indices based on the characteristic variations in the time domain can identify and localize the fatigue crack before it enters the rapid growth stage. The damage severity can be reasonably evaluated by analyzing the time-domain damage indices. Two nonlinear damage indices in the frequency domain give earlier warnings of the fatigue crack than the time-domain damage indices do. The identification results based on the above two nonlinear indices are found to be less consistent under various excitation frequencies. More robust nonlinear techniques needed to be searched and tested for early crack detection in steel I-beams in further study.

Frequency Domain Double-Talk Detector Based on Gaussian Mixture Model (주파수 영역에서의 Gaussian Mixture Model 기반의 동시통화 검출 연구)

  • Lee, Kyu-Ho;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.401-407
    • /
    • 2009
  • In this paper, we propose a novel method for the cross-correlation based double-talk detection (DTD), which employing the Gaussian Mixture Model (GMM) in the frequency domain. The proposed algorithm transforms the cross correlation coefficient used in the time domain into 16 channels in the frequency domain using the discrete fourier transform (DFT). The channels are then selected into seven feature vectors for GMM and we identify three different regions such as far-end, double-talk and near-end speech using the likelihood comparison based on those feature vectors. The presented DTD algorithm detects efficiently the double-talk regions without Voice Activity Detector which has been used in conventional cross correlation based double-talk detection. The performance of the proposed algorithm is evaluated under various conditions and yields better results compared with the conventional schemes. especially, show the robustness against detection errors resulting from the background noises or echo path change which one of the key issues in practical DTD.

Fault Detection and Identification of Induction Motors with Current Signals Based on Dynamic Time Warping

  • Bae, Hyeon;Kim, Sung-Shin;Vachtsevanos, George
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.102-108
    • /
    • 2007
  • The issues of preventive and condition-based maintenance, online monitoring, system fault detection, diagnosis, and prognosis are of increasing importance. This study introduces a technique to detect and identify faults in induction motors. Stator currents were measured and stored by time domain. The time domain is not suitable for representing current signals, so wavelet transform is used to convert the signal; onto frequency domain. The raw signals can not show the significant feature, therefore difference values are applied. The difference values were transformed by wavelet transform and the features are extracted from the transformed signals. The dynamic time warping method was used to identify the four fault types. This study describes the results of detecting fault using wavelet analysis.

Compound Explosives Detection and Component Analysis via Terahertz Time-Domain Spectroscopy

  • Choi, Jindoo;Ryu, Sung Yoon;Kwon, Won Sik;Kim, Kyung-Soo;Kim, Soohyun
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.454-460
    • /
    • 2013
  • We present qualitative and quantitative component analyses on compound explosives via Terahertz time-domain spectroscopy (THz-TDS) based on a combination of wavelet thresholding and wavelength selection. Despite its importance, the field of signal processing of THz signals of compound plastic explosives is relatively unexplored. In this paper, experiment results from explosives Composition B-3 and Pentolite are newly presented, suggesting a novel signal processing procedure for in situ compound explosives detection. The proposed signal processing method demonstrates effective component analysis even in noisy and humid environments, showing significant decrease in component concentration percentage error of approximately 22.7% for Composition B-3 and 48.8% for Pentolite.

Fiber-Optic Distributed Overheating Detection Sensor Using an Optical Time Domain Refrectometry (광시간영역 반사계를 이용한 분포형 광섬유 과열 감지 센서)

  • Kim, Dae Hyun;Kim, Kwang Taek
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.297-301
    • /
    • 2013
  • We proposed and demonstrated a distributed fiber-optic overheating detection sensor using optical time domain refrectometry. With increased of temperature the optical fiber is bended by a bi-metal and it result in optical leaky loss of the fiber. The sensor structure is designed in such a way that the signal of overheating is happen when the temperature exceeding a threshold temperature and the optical fiber is protected from excess bending.

Damage Detection in Time Domain on Structural Damage Size (구조물의 손상크기에 따른 시간영역에서의 손상검출)

  • Kwon Tae-Kyu;Yoo Gye-Hyoung;Lee Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.119-127
    • /
    • 2006
  • A non-destructive time domain approach to examine structural damage using parameterized partial differential equations and Galerkin approximation techniques is presented. The time domain analysis for damage detection is independent of modal parameters and analytical models unlike frequency domain methods which generally rely on analytical models. The time history of the vibration response of the structure was used to identify the presence of damage. Damage in a structure causes changes in the physical coefficients of mass density, elastic modulus and damping coefficients. This is a part of our ongoing effort on the general problem of modeling and parameter estimation for internal damping mechanisms in a composite beam. Namely, in detecting damage through time-domain or frequency-domain data from smart sensors, the common damages are changed in modal properties such as natural frequencies, mode shapes, and mode shape curvature. This paper examines the use of beam-like structures with piezoceramic sensors and actuators to perform identification of those physical parameters, and detect the damage. Experimental results are presented from tests on cantilevered composite beams damaged at different locations and different dimensions. It is demonstrated that the method can sense the presence of damage and obtain the position of a damage.

Scene Change Detection with Sequential Access Method in Compressed MPEG Videos (순차접근법을 이용한 MPEG 압축영역에서의 장면전환점 검출)

  • Ahn, Eui-Sub;Song, Hyun-Soo;Lee, Jae-Dong;Kim, Sung-Un
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.353-360
    • /
    • 2004
  • The study on scene change detection in the compressed MPEG videos has been done by various approaches. However, most of these approacher accomplished scene change detection by carrying out decoding processes and then by comparing pixels with pixels. This approach it not suitable for real time applications owing to much computing time of decoding processes. Recently, the study on scene change detection algorithms using only information of compressed domain is becoming Increasingly important. In this paper, we propose a sequential access method as an efficient scene change detection algorithm in the compressed domain. According to the type of pictures in the compressed MPEG video streams (divided in I-blocks and each I-block into P-blocks), the proposed algorithm provides effective scene change detection by applying sequential access and block by block mechanism. The proposed sequential access method provides fast and accurate detection operation by reducing checking procedures of unnecessary pictures due to molt of operations in compressed domain and checking by block units. Also, this approach uses optimal algorithm to provide fast and accurate detection operation.

Study and Experimentation on Detection of Nicks inside of Porcelain with Acoustic Emission

  • Jin, Wei;Li, Fen
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1572-1579
    • /
    • 2006
  • An usual acoustic emission(AE) event has two widely characterized parameters in time domain, peak amplitude and event duration. But noise in AE measuring may disturb the signals with its parameters and aggrandize the signal incertitude. Experiment activity of detection of the nick inside of porcelain with AE was made and study on AE signal processing with statistic be presented in this paper in order to pick-up information expected from the signal with noise. Effort is concentrated on developing a novel arithmetic to improve extraction of the characteristic from stochastic signal and to enhance the voracity of detection. The main purpose discussed in this paper is to treat with signals on amplitudes with statistic mutuality and power density spectrum in frequency domain, and farther more to select samples for neural networks training by means of least-squares algorithm between real measuring signal and deterministic signals under laboratory condition. By seeking optimization with the algorithm, the parameters representing characteristic of the porcelain object are selected, while the stochastic interfere be weakened, then study for detection on neural networks is developed based on processing above.

  • PDF

Improved Piracy Site Detection Technique using Search Engine

  • Kim, Eui-Jin;Kim, Deuk-Hun;Kwak, Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2459-2472
    • /
    • 2022
  • With the increase in copyright content exports to overseas markets due to the recent globalization of the Korean culture, the added value of the Korean digital content market is increasing at a significant rate. As such, as the size of the copyright market increases, different piracy sites have emerged that generate profits by illegally distributing works without the permission of the copyright holders, resulting in direct and indirect damage to these copyright holders. The existing copyright detection methods used in public institutions for solving this problem are limited, while the piracy sites are ever-changing. Methods are being continuously developed to achieve better detection results. To this end, it is possible to detect the latest infringement site domain by detecting the infringement site domain that is constantly changed through the search engine. This paper proposes an improved piracy site detection method using a search engine to prevent the damage caused by piracy sites.

Building Change Detection Using Deep Learning for Remote Sensing Images

  • Wang, Chang;Han, Shijing;Zhang, Wen;Miao, Shufeng
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.587-598
    • /
    • 2022
  • To increase building change recognition accuracy, we present a deep learning-based building change detection using remote sensing images. In the proposed approach, by merging pixel-level and object-level information of multitemporal remote sensing images, we create the difference image (DI), and the frequency-domain significance technique is used to generate the DI saliency map. The fuzzy C-means clustering technique pre-classifies the coarse change detection map by defining the DI saliency map threshold. We then extract the neighborhood features of the unchanged pixels and the changed (buildings) from pixel-level and object-level feature images, which are then used as valid deep neural network (DNN) training samples. The trained DNNs are then utilized to identify changes in DI. The suggested strategy was evaluated and compared to current detection methods using two datasets. The results suggest that our proposed technique can detect more building change information and improve change detection accuracy.