• Title/Summary/Keyword: Domain Wall

Search Result 387, Processing Time 0.025 seconds

Elastic Wave Propagation in Nuclear Power Plant Containment Building Walls Considering Liner Plate and Concrete Cavity (라이너 플레이트 및 콘크리트 공동을 고려한 원전 격납건물 벽체의 탄성파 전파 해석)

  • Kim, Eunyoung;Kim, Boyoung;Kang, Jun Won;Lee, Hongpyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.167-174
    • /
    • 2021
  • Recent investigation into the integrity of nuclear containment buildings has highlighted the importance of developing an elaborate diagnostic method to evaluate the distribution and size of cavities inside concrete walls. As part of developing such a method, this paper presents a finite element approach to modeling elastic waves propagating in the containment building walls of a nuclear power plant. We introduce a perfectly matched layer (PML) wave-absorbing boundary to limit the large-scale nuclear containment wall to the region of interest. The formulation results in a semi-discrete form with symmetric damping and stiffness matrices. The transient elastic wave equations for a mixed unsplit-field PML were solved for displacement and stresses in the time domain. Numerical results show that the sensitivity of displacement, velocity, acceleration, and stresses is large depending on the size and location of the cavity. The dynamic response of the wall slightly differs depending on the existence of the containment liner plate. The results of this study can be applied to a full-waveform inversion approach for characterizing cavities inside a containment wall.

Numerical Study of Heat Flux and BOG in C-Type Liquefied Hydrogen Tank under Sloshing Excitation at the Saturated State (포화상태에 놓인 C-Type 액체수소 탱크의 슬로싱이 열 유속과 BOG에 미치는 변화의 수치적 분석)

  • Lee, Jin-Ho;Hwang, Se-Yun;Lee, Sung-Je;Lee, Jang Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.299-308
    • /
    • 2022
  • This study was conducted to predict the tendency for heat exchange and boil-off gas (BOG) in a liquefied hydrogen tank under sloshing excitation. First, athe fluid domain excited by sloshing was modeled using a multiphase-thermal flow domain in which liquid hydrogen and hydrogen gas are in the saturated state. Both the the volume of fluid (VOF) and Eulerian-based multi-phase flow methods were applied to validate the accuracy of the pressure prediction. Second, it was indirectly shown that the fluid velocity prediction could be accurate by comparing the free surface and impact pressure from the computational fluid dynamics with those from the experimental results. Thereafter, the heat ingress from the external convective heat flux was reflected on the outer surfaces of the hydrogen tank. Eulerian-based multiphase-heat flow analysis was performed for a two-dimensional Type-C cylindrical hydrogen tank under rotational sloshing motion, and an inflation technique was applied to transform the fluid domain into a computational grid model. The heat exchange and heat flux in the hydrogen liquid-gas mixture were calculated throughout the analysis,, whereas the mass transfer and vaporization models were excluded to account for the pure heat exchange between the liquid and gas in the saturated state. In addition, forced convective heat transfer by sloshing on the inner wall of the tank was not reflected so that the heat exchange in the multiphase flow of liquid and gas could only be considered. Finally, the effect of sloshing on the amount of heat exchange between liquid and gas hydrogen was discussed. Considering the heat ingress into liquid hydrogen according to the presence/absence of a sloshing excitation, the amount of heat flux and BOG were discussed for each filling ratio.

Study on the Effects of Surface Roughness and Turbulence Intensity on Dam-break Flows (댐 붕괴 유동에 미치는 표면 거칠기와 난류강도 변화의 영향 연구)

  • Park, Il-Ryong;Jung, Kwang-Hyo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.3
    • /
    • pp.247-253
    • /
    • 2012
  • Dam-break flows, a type of very shallow gravity-driven flow, are substantially influenced by resistance forces due to viscous friction and turbulence. Assuming turbulent flow, the main focus of this study is to validate the increase of drag forces caused by surface roughness and especially turbulence intensity. A Reynolds Averaged Navier-Stokes(RANS) approach with the standard k-${\varepsilon}$ turbulence model is used for this study, where the free surface motion is captured by using a volume of fluid(VOF) method. Surface roughness effects are considered through the law of the wall modified for roughness, while the initial turbulence intensity which determines the lowest level of turbulence in the flow domain of interest is used for the variation of turbulence intensity. It has been found that the numerical results at higher turbulence intensities show a reasonably good agreement with the physical aspects shown by two different dam-break experiments without and with the impact of water.

Passivity Control of a Passive Haptic Device based on Passive FME Analysis

  • Cho, Chang-Hyun;Kim, Beom-Seop;Kim, Mun-Sang;Song, Jae-Bok;Park, Mi-Gnon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1559-1564
    • /
    • 2003
  • In this paper, a control method is presented to improve performance of haptic display on a passive haptic device equipped with passive actuators. In displaying a virtual wall with the passive haptic device, an unstable behavior occurs with excessive actions of brakes due to the time delay mainly arising from the update rate of the virtual environment and force approximation originated from the characteristics of the passive actuators. The previous T.D.P.C. (Time Domain Passivity Control) method was not suitable for the passive haptic device, since a programmable damper used in the previously introduced T.D.P.C. method easily leads to undesirable behaviors. A new passivity control method is evaluated with considering characteristics of the passive device. First, we propose a control method which is designed under the analysis of the passive FME (Force Manipulability Ellipsoid). And then a passivity control scheme is applied to the proposed control method. Various experiments have been conducted to verify the proposed method with a 2-link mechanism.

  • PDF

Harmonic frequency analysts of acoustic Barkhausen noise on neutron irradiated material (중성자조사재료의 acoustic Barkhausen noise의 harmonic frequency 분석)

  • Sim Cheul-Muu;Park Seung-Sik;Koo Kil-Moo;Sohn Jae-Min;Lee Chang-Hee
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.401-406
    • /
    • 1999
  • In relation to a non-destructive evaluation of irradiation damages of micro-structure interstitial, void and dislocation, the changes in the hysteresis loop, Barkhausen noise amplitude and the harmonics frequency due to a neutron irradiation were measured and evaluated. The Mn-Mo-Ni low alloy steel of RPV was irradiated to a neutron fluence of $2.3\times10^{19}\;n/cm^2\;(E\geq1\;MeV)\;at\;288^{\circ}C$. The saturation magnetization of neutron irradiated metal did not change. The neutron irradiation caused the coercivity to increase, whereas susceptibility to decrease. The amplitude of Barkhausen noise parameters associated with the domain wall motion were decreased by a neutron irradiation. The spectrum of Barkhausen noise is analysed with an applied frequency of 4 Hz and 8 Hz, sampling time of $50\;{\mu}sec\;and\;20\;{\mu}sec$. The harmonic frequency shows 4 Hz, 8 Hz, 12 Hz; and 16 Hz reflected from an unirradiated specimen. On the contrary, the harmonic frequency disappeared on the irradiated specimen.

  • PDF

A Sequential Design of Dual Pulse Generation System Based on Dynamic Analysis of Pulse Shape (이중충격파의 충격파형 동특성 분석에 근거한 충격시험장치의 순차적 설계)

  • Kang, Minsig;Shul, Changwon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.98-107
    • /
    • 2017
  • Electric components equipped with naval shipboards must endure mechanical shock caused by various mechanical impulsive sources. Thus the components must be designed carefully and reliability test is an essential procedure before use. In this study, a new design technology applicable to a large and heavy shock generation system which can generate various specific real mechanical shocks in specified time domain was introduced. Commonly, the shock transmitted through the wall of naval shipboard consists of dual shocks. The primary shock is of a very high amplitude and very short period half-sine form. The following shock is of an exponentially decaying harmonic form of relatively longer period. Based on the different dynamic characteristics of two shocks, we proposed a sequential design procedure to determine spring and damping coefficients of the generation system. Some numerical simulation results showed the feasibility of the proposed method.

The Electrical Properties of SBT Thin Film for Semiconductor Device (반도체 소자용 SBT 박막의 전기적특성)

  • Oh, Yong-Cheul;Cho, Choon-Nam;Kim, Jin-Sa;Shin, Chul-Ki;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.86-89
    • /
    • 2003
  • SBT thin film for semiconductor device that is made by RF magnetron sputtering method studied electrical properties under various temperature condition. Dielectric constant who differ annealing condition appears highest in $750[^{\circ}C]$ and it is 213. Also, C-V properties by annealing temperature of SBT thin film for semiconductor device is no change almost to $600[^{\circ}C]$ and shows non-linear butterfly shape more than $650[^{\circ}C]$ Maximum capacitance and difference of smallest capacitance show the biggest difference in $750[^{\circ}C]$ as degree that domain wall motion contributes in ferrelectric polarization value in C-V characteristic curve of ferroelectric that this shows typical ferroelectric properties. Therefore, SBT thin film for semiconductor device that is annealing in $750[^{\circ}C]$ expressed the most superior electrical and ferroelectric properties.

  • PDF

Heat Transfer Measurement Using a Transient Liquid Crystal Technique and Numerical Anlysis (과도액정기법을 이용한 열전달 측정 및 수치해석)

  • Hong Cheol-Hyun;Lee Ki-Baik;Yang Jang-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.68-77
    • /
    • 2005
  • A transient liquid crystal technique has become one of the most effective ways in measuring the local heat transfer coefficients on the entire surface. The key Point of this technique is to convert the inlet flow temperature into an exponential temperature profile using a mesh heater. In order to verify the validity of this technique. the heat transfer characteristics on the wall surface by a pair of longitudinal vortices is investigated experimently and numerically. A standard ${\kappa}-{\varepsilon}$ is used for the numerical analysis of turbulent flow field. It is found from experiment and numerical analysis that two peak values exist over the whole domain. as the longitudinal vortices move to the farther downstream. these peak values decrease and the dimensionless averaged Nusselt number with the lapse of time is maintained nearly at constant values. The experiment results obtained from the present experiment in terms of the transient liquid crystal technique are in good agreement with the numerical results. Therefore, the transient liquid crystal technique developed for the measurement of heat transfer coefficient is proved to be a valid method.

Visous resistance analysis of a ship using numerical solutions (수치해를 이용한 선박의 점성저항 해석)

  • 곽영기
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.100-106
    • /
    • 1997
  • Viscous flow around an actual ship is calculated by an use of RANS(Reynolds-averaged Navier-Stokes) solver. Reynolds stress is modelled by using k-$\varepsilon$ turbulence model and the law of wall is applied near the body. Body fitted coordinates are introduced for the treatment of the complex boundary of the ship hull form. The transformed equations in the computational domain are numerically solved by an employment of FVM(Finite Volume Method). SIMPLE(Semi-Implcit Pressure Linked Equation) method is adopted in the calculation of pressure and the solution of the disssssssscretized equation is obtained by the line-by-line method with the use of TDMA(Tri-Diagonal Matrix Algorithme). The subject ship model of actual calculation is 4,410 TEU class container carrier. For 4 geosim models the calculated viscous resistancce values are compared with the model test results and analyzed on their componentss. The resistance performance of an actual ship is predicted very resonably, so this mothod may be utilized as a design tool of hull form.

  • PDF

Study on Steady Flow Effects in Numerical Computation of Added Resistance of Ship in Waves

  • Lee, Jae-Hoon;Kim, Beom-Soo;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.193-203
    • /
    • 2017
  • This study investigated the steady-flow effects present in the numerical computation of the resistance added to a ship in waves. For a ship advancing in the forward direction, a time-domain 3D Rankine panel method is applied to solve the ship motion problem, and the added resistance due to waves is calculated using a near-field method, with the direct integration of the second-order pressure on the hull surface. In the linear potential theory, the steady flow is approximated by the basis potential of a uniform flow or double-body flow in order to linearize the boundary conditions. By applying these two different linearization schemes, the coupling effects between steady and unsteady solutions were examined. Furthermore, in order to analyze the steady-flow effects on the hull geometry, the computation results for two realistic hull forms, a KVLCC2 tanker and DTC containership, were compared. In particular, the mj term, which represents the coupling effects under the body boundary condition, was evaluated considering the geometry of a non-wall-sided ship. Lastly, the characteristics of the linearization schemes were examined in relation to the disturbed waves around a ship and the components of added resistance.