• Title/Summary/Keyword: Document Order

Search Result 778, Processing Time 0.029 seconds

Document Classification using Recurrent Neural Network with Word Sense and Contexts (단어의 의미와 문맥을 고려한 순환신경망 기반의 문서 분류)

  • Joo, Jong-Min;Kim, Nam-Hun;Yang, Hyung-Jeong;Park, Hyuck-Ro
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.7
    • /
    • pp.259-266
    • /
    • 2018
  • In this paper, we propose a method to classify a document using a Recurrent Neural Network by extracting features considering word sense and contexts. Word2vec method is adopted to include the order and meaning of the words expressing the word in the document as a vector. Doc2vec is applied for considering the context to extract the feature of the document. RNN classifier, which includes the output of the previous node as the input of the next node, is used as the document classification method. RNN classifier presents good performance for document classification because it is suitable for sequence data among neural network classifiers. We applied GRU (Gated Recurrent Unit) model which solves the vanishing gradient problem of RNN. It also reduces computation speed. We used one Hangul document set and two English document sets for the experiments and GRU based document classifier improves performance by about 3.5% compared to CNN based document classifier.

Document Summarization Considering Entailment Relation between Sentences (문장 수반 관계를 고려한 문서 요약)

  • Kwon, Youngdae;Kim, Noo-ri;Lee, Jee-Hyong
    • Journal of KIISE
    • /
    • v.44 no.2
    • /
    • pp.179-185
    • /
    • 2017
  • Document summarization aims to generate a summary that is consistent and contains the highly related sentences in a document. In this study, we implemented for document summarization that extracts highly related sentences from a whole document by considering both similarities and entailment relations between sentences. Accordingly, we proposed a new algorithm, TextRank-NLI, which combines a Recurrent Neural Network based Natural Language Inference model and a Graph-based ranking algorithm used in single document extraction-based summarization task. In order to evaluate the performance of the new algorithm, we conducted experiments using the same datasets as used in TextRank algorithm. The results indicated that TextRank-NLI showed 2.3% improvement in performance, as compared to TextRank.

Machine Learning Based Automatic Categorization Model for Text Lines in Invoice Documents

  • Shin, Hyun-Kyung
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1786-1797
    • /
    • 2010
  • Automatic understanding of contents in document image is a very hard problem due to involvement with mathematically challenging problems originated mainly from the over-determined system induced by document segmentation process. In both academic and industrial areas, there have been incessant and various efforts to improve core parts of content retrieval technologies by the means of separating out segmentation related issues using semi-structured document, e.g., invoice,. In this paper we proposed classification models for text lines on invoice document in which text lines were clustered into the five categories in accordance with their contents: purchase order header, invoice header, summary header, surcharge header, purchase items. Our investigation was concentrated on the performance of machine learning based models in aspect of linear-discriminant-analysis (LDA) and non-LDA (logic based). In the group of LDA, na$\"{\i}$ve baysian, k-nearest neighbor, and SVM were used, in the group of non LDA, decision tree, random forest, and boost were used. We described the details of feature vector construction and the selection processes of the model and the parameter including training and validation. We also presented the experimental results of comparison on training/classification error levels for the models employed.

Distortion Corrected Black and White Document Image Generation Based on Camera (카메라기반의 왜곡이 보정된 흑백 문서 영상 생성)

  • Kim, Jin-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.11
    • /
    • pp.18-26
    • /
    • 2015
  • Geometric distortion and shadow effect due to capturing angle could be included in document copy images that are captured by a camera in stead of a scanner. In this paper, a clean black and white document image generation algorithm by distortion correction and shadow elimination based on a camera, is proposed. In order to correct geometric distortion such as straightening un-straight boundary lines occurred by camera lens radial distortion and eliminating outlying area included by camera direction, second derivative filter based document boundary detection method is developed. Black and white images have been generated by adaptive binarization method by eliminating shadow effect. Experimental results of the black and white document image generation algorithm by recovering geometrical distortion and eliminating shadow effect for the document images captured by smart phone camera, shows very good processing results.

Object Modeling for Mapping from XML Document and Query to UML Class Diagram based on XML-GDM (XML-GDM을 기반으로 한 UML 클래스 다이어그램으로 사상을 위한 XML문서와 질의의 객체 모델링)

  • Park, Dae-Hyun;Kim, Yong-Sung
    • The KIPS Transactions:PartD
    • /
    • v.17D no.2
    • /
    • pp.129-146
    • /
    • 2010
  • Nowadays, XML has been favored by many companies internally and externally as a means of sharing and distributing data. there are many researches and systems for modeling and storing XML documents by an object-oriented method as for the method of saving and managing web-based multimedia document more easily. The representative tool for the object-oriented modeling of XML documents is UML (Unified Modeling Language). UML at the beginning was used as the integrated methodology for software development, but now it is used more frequently as the modeling language of various objects. Currently, UML supports various diagrams for object-oriented analysis and design like class diagram and is widely used as a tool of creating various database schema and object-oriented codes from them. This paper proposes an Efficinet Query Modelling of XML-GL using the UML class diagram and OCL for searching XML document which its application scope is widely extended due to the increased use of WWW and its flexible and open nature. In order to accomplish this, we propose the modeling rules and algorithm that map XML-GL. which has the modeling function for XML document and DTD and the graphical query function about that. In order to describe precisely about the constraint of model component, it is defined by OCL (Object Constraint Language). By using proposed technique creates a query for the XML document of holding various properties of object-oriented model by modeling the XML-GL query from XML document, XML DTD, and XML query while using the class diagram of UML. By converting, saving and managing XML document visually into the object-oriented graphic data model, user can prepare the base that can express the search and query on XML document intuitively and visually. As compared to existing XML-based query languages, it has various object-oriented characteristics and uses the UML notation that is widely used as object modeling tool. Hence, user can construct graphical and intuitive queries on XML-based web document without learning a new query language. By using the same modeling tool, UML class diagram on XML document content, query syntax and semantics, it allows consistently performing all the processes such as searching and saving XML document from/to object-oriented database.

A Study on Keyword Extraction From a Single Document Using Term Clustering (용어 클러스터링을 이용한 단일문서 키워드 추출에 관한 연구)

  • Han, Seung-Hee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.44 no.3
    • /
    • pp.155-173
    • /
    • 2010
  • In this study, a new keyword extraction algorithm is applied to a single document with term clustering. A single document is divided by multiple passages, and two ways of calculating similarities between two terms are investigated; the first-order similarity and the second-order distributional similarity. In this experiment, the best cluster performance is achieved with a 50-term passage from the second-order distributional similarity. From the results of first experiment, the second-order distribution similarity was also applied to various keyword extraction methods using statistic information of terms. In the second experiment, pf(paragraph frequency) and $tf{\times}ipf$(term frequency by inverse paragraph frequency) were found to improve the overall performance of keyword extraction. Therefore, it showed that the algorithm fulfills the necessary conditions which good keywords should have.

The Design and Implementation of OWL Ontology Construction System through Information Extraction of Unstructured Documents (비정형 문서의 정보추출을 통한 OWL 온톨로지 구축 시스템의 설계 및 구현)

  • Jo, Dae Woong;Choi, Ji Woong;Kim, Myung Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.10
    • /
    • pp.23-33
    • /
    • 2014
  • The development of the information retrieval field is evolving to the research field searching accurately for the information from thing finding rapidly a large amount of information. Personalization and the semantic web technology is a key technology. The automatic indexing technology about the web document and throughput go beyond the research stage and show up as the practical service. However, there is a lack of research on the document information retrieval field about the attached document type of except the web document. In this paper, we illustrate about the method in which it analyzed the text content of the unstructured documents prepared in the text, word, hwp form and it how to construction OWL ontology. To build TBox of the document ontology and the resources which can be obtained from the document is selected, and we implement with the system in order to utilize as the instant of the constructed document ontology. It is effectually usable in the information retrieval and document management system using the semantic technology of the correspondence document as the ontology automatic construction of this kind of the unstructured documents.

A Focused Crawler by Segmentation of Context Information (주변정보 분할을 이용한 주제 중심 웹 문서 수집기)

  • Cho, Chang-Hee;Lee, Nam-Yong;Kang, Jin-Bum;Yang, Jae-Young;Choi, Joong-Min
    • The KIPS Transactions:PartB
    • /
    • v.12B no.6 s.102
    • /
    • pp.697-702
    • /
    • 2005
  • The focused crawler is a topic-driven document-collecting crawler that was suggested as a promising alternative of maintaining up-to-date web document Indices in search engines. A major problem inherent in previous focused crawlers is the liability of missing highly relevant documents that are linked from off-topic documents. This problem mainly originated from the lack of consideration of structural information in a document. Traditional weighting method such as TFIDF employed in document classification can lead to this problem. In order to improve the performance of focused crawlers, this paper proposes a scheme of locality-based document segmentation to determine the relevance of a document to a specific topic. We segment a document into a set of sub-documents using contextual features around the hyperlinks. This information is used to determine whether the crawler would fetch the documents that are linked from hyperlinks in an off-topic document.

Analysis of Indexing Schemes for Structure-Based Retrieval (구조 기반 검색을 위한 색인 구조에 대한 분석)

  • 김영자;김현주;배종민
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.5
    • /
    • pp.601-616
    • /
    • 2004
  • Information retrieval systems for structured documents provide multiple levels of retrieval capability by supporting structure-based queries. In order to process structure-based queries for structured documents, information for structural nesting relationship between elements and for element sequence must be maintained. This paper presents four index structures that can process various query types about structures such as structural relationships between elements or element occurrence order. The proposed algorithms are based on the concept of Global Document Instance Tree.

  • PDF

A Plug-in Development for Interworking between SysML Model and Plant Information (SysML모델과 플랜트정보 간 상호연동을 위한 플러그인 개발)

  • Kim, Joon Young;Lee, Tae Kyong;Cha, Jae Min
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.15 no.2
    • /
    • pp.17-30
    • /
    • 2019
  • Due to difficulties in tracking design information of existing document-based configuration management, the research on the development of plant SysML model was started to apply the model-based system engineering methodology to comprehensively manage various design information. However, until now, in order to create the SysML model, the engineers are checking the design information and inputting it to the SysML model. This process requires a lot of time and manpower, it is required to minimize it. Therefore, this study has recognized the problem, a plug-in that extracts the plant design information in the design document and automatically converts the SysML plant model from it. Specifically, the development was performed in the following order. First, the extraction file was selected as the most commonly used Excel file as the plant design document. Next, the design information in the document was analyzed, and extracted information including tag number, name, and the capacity were selected. Finally, the plant SysML model conversion module was implemented. The developed plug-in is confirmed that the task load of the engineers by the SysML model conversion can be minimized and the model can be generated more quickly and accurately.