• Title/Summary/Keyword: Document Image Analysis

Search Result 86, Processing Time 0.023 seconds

Research and Development of Document Recognition System for Utilizing Image Data (이미지데이터 활용을 위한 문서인식시스템 연구 및 개발)

  • Kwag, Hee-Kue
    • The KIPS Transactions:PartB
    • /
    • v.17B no.2
    • /
    • pp.125-138
    • /
    • 2010
  • The purpose of this research is to enhance document recognition system which is essential for developing full-text retrieval system of the document image data stored in the digital library of a public institution. To achieve this purpose, the main tasks of this research are: 1) analyzing the document image data and then developing its image preprocessing technology and document structure analysis one, 2) building its specialized knowledge base consisting of document layout and property, character model and word dictionary, respectively. In addition, developing the management tool of this knowledge base, the document recognition system is able to handle the various types of the document image data. Currently, we developed the prototype system of document recognition which is combined with the specialized knowledge base and the library of document structure analysis, respectively, adapted for the document image data housed in National Archives of Korea. With the results of this research, we plan to build up the test-bed and estimate the performance of document recognition system to maximize the utilization of full-text retrieval system.

Document Image Segmentation and Classification using Texture Features and Structural Information (텍스쳐 특징과 구조적인 정보를 이용한 문서 영상의 분할 및 분류)

  • Park, Kun-Hye;Kim, Bo-Ram;Kim, Wook-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.3
    • /
    • pp.215-220
    • /
    • 2010
  • In this paper, we propose a new texture-based page segmentation and classification method in which table region, background region, image region and text region in a given document image are automatically identified. The proposed method for document images consists of two stages, document segmentation and contents classification. In the first stage, we segment the document image, and then, we classify contents of document in the second stage. The proposed classification method is based on a texture analysis. Each contents in the document are considered as regions with different textures. Thus the problem of classification contents of document can be posed as a texture segmentation and analysis problem. Two-dimensional Gabor filters are used to extract texture features for each of these regions. Our method does not assume any a priori knowledge about content or language of the document. As we can see experiment results, our method gives good performance in document segmentation and contents classification. The proposed system is expected to apply such as multimedia data searching, real-time image processing.

Automatic Title Detection by Spatial Feature and Projection Profile for Document Images (공간 정보와 투영 프로파일을 이용한 문서 영상에서의 타이틀 영역 추출)

  • Park, Hyo-Jin;Kim, Bo-Ram;Kim, Wook-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.3
    • /
    • pp.209-214
    • /
    • 2010
  • This paper proposes an algorithm of segmentation and title detection for document image. The automated title detection method that we have developed is composed of two phases, segmentation and title area detection. In the first phase, we extract and segment the document image. To perform this operation, the binary map is segmented by combination of morphological operation and CCA(connected component algorithm). The first phase provides segmented regions that would be detected as title area for the second stage. Candidate title areas are detected using geometric information, then we can extract the title region that is performed by removing non-title regions. After classification step that removes non-text regions, projection is performed to detect a title region. From the fact that usually the largest font is used for the title in the document, horizontal projection is performed within text areas. In this paper, we proposed a method of segmentation and title detection for various forms of document images using geometric features and projection profile analysis. The proposed system is expected to have various applications, such as document title recognition, multimedia data searching, real-time image processing and so on.

DP-LinkNet: A convolutional network for historical document image binarization

  • Xiong, Wei;Jia, Xiuhong;Yang, Dichun;Ai, Meihui;Li, Lirong;Wang, Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1778-1797
    • /
    • 2021
  • Document image binarization is an important pre-processing step in document analysis and archiving. The state-of-the-art models for document image binarization are variants of encoder-decoder architectures, such as FCN (fully convolutional network) and U-Net. Despite their success, they still suffer from three limitations: (1) reduced feature map resolution due to consecutive strided pooling or convolutions, (2) multiple scales of target objects, and (3) reduced localization accuracy due to the built-in invariance of deep convolutional neural networks (DCNNs). To overcome these three challenges, we propose an improved semantic segmentation model, referred to as DP-LinkNet, which adopts the D-LinkNet architecture as its backbone, with the proposed hybrid dilated convolution (HDC) and spatial pyramid pooling (SPP) modules between the encoder and the decoder. Extensive experiments are conducted on recent document image binarization competition (DIBCO) and handwritten document image binarization competition (H-DIBCO) benchmark datasets. Results show that our proposed DP-LinkNet outperforms other state-of-the-art techniques by a large margin. Our implementation and the pre-trained models are available at https://github.com/beargolden/DP-LinkNet.

Document Layout Analysis Based on Fuzzy Energy Matrix

  • Oh, KangHan;Kim, SooHyung
    • International Journal of Contents
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2015
  • In this paper, we describe a novel method for document layout analysis that is based on a Fuzzy Energy Matrix (FEM). A FEM is a two-dimensional matrix that contains the likelihood of text and non-text and is generated through the use of Fuzzy theory. The key idea is to define an Energy map for the document to categorize text and non-text. The proposed mechanism is designed for execution with a low-resolution document image, and hence our method has a fast processing speed. The proposed method has been tested on public ICDAR 2009 datasets to conduct a comparison against other state-of-the-art methods, and it was also tested with Korean documents. The results of the experiment indicate that this scheme achieves superior segmentation accuracy, in terms of both precision and recall, and also requires less time for computation than other state-of-the-art document image analysis methods.

Separation of Text and Non-text in Document Layout Analysis using a Recursive Filter

  • Tran, Tuan-Anh;Na, In-Seop;Kim, Soo-Hyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4072-4091
    • /
    • 2015
  • A separation of text and non-text elements plays an important role in document layout analysis. A number of approaches have been proposed but the quality of separation result is still limited due to the complex of the document layout. In this paper, we present an efficient method for the classification of text and non-text components in document image. It is the combination of whitespace analysis with multi-layer homogeneous regions which called recursive filter. Firstly, the input binary document is analyzed by connected components analysis and whitespace extraction. Secondly, a heuristic filter is applied to identify non-text components. After that, using statistical method, we implement the recursive filter on multi-layer homogeneous regions to identify all text and non-text elements of the binary image. Finally, all regions will be reshaped and remove noise to get the text document and non-text document. Experimental results on the ICDAR2009 page segmentation competition dataset and other datasets prove the effectiveness and superiority of proposed method.

Block Classification of Document Images by Block Attributes and Texture Features (블록의 속성과 질감특징을 이용한 문서영상의 블록분류)

  • Jang, Young-Nae;Kim, Joong-Soo;Lee, Cheol-Hee
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.856-868
    • /
    • 2007
  • We propose an effective method for block classification in a document image. The gray level document image is converted to the binary image for a block segmentation. This binary image would be smoothed to find the locations and sizes of each block. And especially during this smoothing, the inner block heights of each block are obtained. The gray level image is divided to several blocks by these location informations. The SGLDM(spatial gray level dependence matrices) are made using the each gray-level document block and the seven second-order statistical texture features are extracted from the (0,1) direction's SGLDM which include the document attributes. Document image blocks are classified to two groups, text and non-text group, by the inner block height of the block at the nearest neighbor rule. The seven texture features(that were extracted from the SGLDM) are used for the five detail categories of small font, large font, table, graphic and photo blocks. These document blocks are available not only for structure analysis of document recognition but also the various applied area.

  • PDF

Machine Learning Based Automatic Categorization Model for Text Lines in Invoice Documents

  • Shin, Hyun-Kyung
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1786-1797
    • /
    • 2010
  • Automatic understanding of contents in document image is a very hard problem due to involvement with mathematically challenging problems originated mainly from the over-determined system induced by document segmentation process. In both academic and industrial areas, there have been incessant and various efforts to improve core parts of content retrieval technologies by the means of separating out segmentation related issues using semi-structured document, e.g., invoice,. In this paper we proposed classification models for text lines on invoice document in which text lines were clustered into the five categories in accordance with their contents: purchase order header, invoice header, summary header, surcharge header, purchase items. Our investigation was concentrated on the performance of machine learning based models in aspect of linear-discriminant-analysis (LDA) and non-LDA (logic based). In the group of LDA, na$\"{\i}$ve baysian, k-nearest neighbor, and SVM were used, in the group of non LDA, decision tree, random forest, and boost were used. We described the details of feature vector construction and the selection processes of the model and the parameter including training and validation. We also presented the experimental results of comparison on training/classification error levels for the models employed.

Document Layout Analysis Using Coarse/Fine Strategy (Coarse/fine 전략을 이용한 문서 구조 분석)

  • 박동열;곽희규;김수형
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.198-201
    • /
    • 2000
  • We propose a method for analyzing the document structure. This method consists of two processes, segmentation and classification. The segmentation first divides a low resolution image, and then finely splits the original document image using projection profiles. The classification deterimines each segmented region as text, line, table or image. An experiment with 238 documents images shows that the segmentation accuracy is 99.1% and the classification accuracy is 97.3%.

  • PDF

Texture-based PCA for Analyzing Document Image (텍스처 정보 기반의 PCA를 이용한 문서 영상의 분석)

  • Kim, Bo-Ram;Kim, Wook-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.283-284
    • /
    • 2006
  • In this paper, we propose a novel segmentation and classification method using texture features for the document image. First, we extract the local entropy and then segment the document image to separate the background and the foreground using the Otsu's method. Finally, we classify the segmented regions into each component using PCA(principle component analysis) algorithm based on the texture features that are extracted from the co-occurrence matrix for the entropy image. The entropy-based segmentation is robust to not only noise and the change of light, but also skew and rotation. Texture features are not restricted from any form of the document image and have a superior discrimination for each component. In addition, PCA algorithm used for the classifier can classify the components more robustly than neural network.

  • PDF