• Title/Summary/Keyword: Docosahexaenoic acid

Search Result 381, Processing Time 0.026 seconds

Fatty Acid Compositions of Lipids Extracted from Bullfrogs (황소개구리에서 추출한 지방의 지방산 조성)

  • 황금택;홍진선;강성국;정순택
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.2
    • /
    • pp.351-354
    • /
    • 2002
  • The objective of this study was to analyze fatty acid composition in lipids extracted from bullfrogs (Rana catesbeiana Shaw) inhabiting in Korea. Lipid contents in bullfrog legs and bodies were less than 1% (w/w, wet basis) and seasonal variation of the lipid contents was not observed. Lipids in bullfrog legs consisted of 26~31% (w/w) saturated fatty acids, 16~24% monounsaturated fatty acids, and 30~40% polyunsaturated fatty acids. Lipids in bullfrog bodies consisted of 23~28% saturated fatty acids, 29~44% monounsaturated fatty acids, and 16~30% polyunsaturated fatty acids. The major fatty acids in lipids extracted from bullfrogs were palmitic acid, oleic acid, and linoleic acid. Lipids in leg muscles contained 3~8% eicosapentaenoic acid (EPA) and 6~10% docosahexaenoic acid (DHA). Lipids in bodies had 1~3% EPA and 1~3% DHA.

Extraction of Docosahexaenoic Acid (DHA) from Lyophilized Thraustochitrium sp.

  • CHO, JOONG-HOON;GWI-SUK HEO;JI-WON YANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.5
    • /
    • pp.358-360
    • /
    • 1996
  • Solvent extraction, soxhlet method, and supercritical fluid extracion were considered, respectively, as the method of choice for the recovery of DHA from lyophilized Thraustochitrium sp., and the results of corresponding extraction were compared. Supercritical fluid extraction seems to be the most appropriate process with respect to time, process simplicity, and extractant intoxicity.

  • PDF

EPA, DHA and Tocopherol Contents in Fish Oil Products and Fishes (어유제품과 생선의 EPA, DHA 및 토코페롤 함량)

  • 김연경;주광지
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.1
    • /
    • pp.68-72
    • /
    • 1994
  • Six brands of encapsulated fishoil products and five fishes were analyzed for their contents of eicosapentaenoic acid (EPA 20 :5 n-3) , docosahexaenoic acid(DHA 22: 6 n-3) and tocopherols. In both of the fish oil products and the fishes, major fatty acids were palmitic acid, oleic acid, eicosapentaeoic acid and docosahexaenoic acid and fatty acid compositions were also similar pattern each other. EPA showed variable amounts from 19.2 to 50.3% in the oil products whereas DHA were 13.2% to 28.3% inthe fishes. Tocopherols were studied in relation to the oxidative stability of fish products no relation was observed. However the amount of tocopherols in fish oil proudcts were higher than that of fishes. Contents of EPA, DHA and tocopherols in encapsulated fishoil products oil products were variable comparing with manufactures' claimed contents.

  • PDF

Anti-cancer Mechanism of Docosahexaenoic Acid in Pancreatic Carcinogenesis: A Mini-review

  • Park, Mirae;Kim, Hyeyoung
    • Journal of Cancer Prevention
    • /
    • v.22 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • Pancreatic cancer is a highly aggressive malignant tumor of the digestive system and radical resection, which is available to very few patients, might be the only possibility for cure. Since therapeutic choices are limited at the advanced stage, prevention is more important for reducing incidence in high-risk individuals with family history of pancreatic cancer. Epidemiological studies have shown that a high consumption of fish oil or ${\omega}3-polyunsaturated$ fatty acids reduces the risk of pancreatic cancers. Dietary fish oil supplementation has shown to suppress pancreatic cancer development in animal models. Previous experimental studies revealed that several hallmarks of cancer involved in the pathogenesis of pancreatic cancer, such as the resistance to apoptosis, hyper-proliferation with abnormal $Wnt/{\beta}-catenin$ signaling, expression of pro-angiogenic growth factors, and invasion. Docosahexaenoic acid (DHA) is a ${\omega}3-polyunsaturated$ fatty acid and rich in cold oceanic fish oil. DHA shows anti-cancer activity by inducing oxidative stress and apoptosis, inhibiting $Wnt/{\beta}-catenin$ signaling, and decreasing extracellular matrix degradation and expression of pro-angiogenic factors in pancreatic cancer cells. This review will summarize anti-cancer mechanism of DHA in pancreatic carcinogenesis based on the recent studies.

Development of Hydrophobically Modified Casein Derivative-Based Delivery System for Docosahexaenoic Acids by an Acid-Induced Gelation

  • Ho-Kyung Ha;Dan-Bi Woo;Mee-Ryung Lee;Won-Jae Lee
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.220-231
    • /
    • 2023
  • Although omega-3 fatty acids including docosahexaenoic acid (DHA) contain various health-promoting effects, their poor aqueous solubility and stability make them difficult to be induced in dairy foods. The aims of this research were to manufacture casein derivative-based delivery system using acid-induced gelation method with glucono-σ-lactone and to investigate the effects of production variables, such as pH and charged amount of linoleic acid, on the physicochemical properties of delivery systems and oxidative stability of DHA during storage in model milk. Covalent modification with linoleic acid resulted in the production of casein derivatives with varying degrees of modification. As pH was reduced from 5.0 to 4.8 and the charged amount of linoleic acid was increased from 0% to 30%, an increase in particle size of casein derivative-based delivery systems was observed. The encapsulation efficiency of DHA was increased with decreased pH and increased charged amount of linoleic acid. The use of delivery system for DHA resulted in a decrease in the development of primary and secondary oxidation products. An increase in the degree of modification of casein derivatives with linoleic acid resulted in a decrease in the formation of primary and secondary oxidation products than of free DHA indicating that delivery systems could enhance the oxidative stability of DHA during storage in model milk. In conclusions, casein derivatives can be an effective delivery system for DHA and charged amount of linoleic acid played a key role determining the physicochemical characteristics of delivery system and oxidative stability of DHA.

Effect and mechanism of docosahexaenoic acid on the proliferation of dermal papilla cells (Docosahexaenoic acid의 모유두세포 증식 효능 및 기전)

  • Ko, Jiyeon;Oh, Il-Joong;Kang, Jung-Il;Choi, Youn Kyung;Yoon, Hoon-Seok;Yoo, Eun-Sook;Ko, Chang-Ik;Ahn, Yong-Seok
    • Journal of Medicine and Life Science
    • /
    • v.16 no.3
    • /
    • pp.84-89
    • /
    • 2019
  • Docosahexaenoic acid (DHA), a principal of mackerel-derived fermented fish oil, increases the proliferation of dermal papilla cells (DPCs) via the upregulation of cell cycle-associated proteins such as cyclin D1 and cdc2 p34, and might promote hair-growth. However, the intracellular mechanisms that underlie the action of DHA in the proliferation of DPCs have not been investigated fully. In this study, we addressed the action mechanisms of DHA to trigger the activation of anagen in DPCs. DHA activated β-catenin signaling by the increased phosphorylation at serine 552 and serine 675 as well as the translocation and accumulation of activated β-catenin into the nucleus. In the other hand, DHA inhibited canonical TGF-β/Smad signaling by the decreased phosphorylation of Smad2/3. Taken together, the results indicate that DHA might stimulate anagen signaling via the activation of Wnt/β-catenin pathway, while the inactivation of canonical TGF-β signaling pathway in DPCs.

The Effects of Docosahexaenoic Acid Oil and Soybean Oil on the Expression of Lipid Metabolism Related mRNA in Pigs

  • Liu, B.H.;Wang, Y.C.;Kuo, C.F.;Cheng, W.M.;Shen, T.F.;Ding, Shih-Torng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1451-1456
    • /
    • 2005
  • To study the acute effect of dietary docosahexaenoic acid (DHA, $C_{22:6}$) on the expression of adipocyte determination and differentiation-dependent factor 1 (ADD1) mRNA in pig tissues, weaned, crossbred pigs (28 d of age) were fed with either 10% (on as-fed basis) tallow (high stearic acid), soybean oil (high linoleic acid), or high DHA algal oil for 2 d. The plasma and liver DHA reflected the composition of the diet. The adipose tissue and skeletal muscle DHA did not reflect the diet in the short term feeding. The results also showed that the diet containing 10% algal DHA oil significantly decreased the total plasma cholesterol (39%) and triacylglycerol (TG; 46%) in the pigs. Soybean oil significantly decreased plasma TG (13.7%; p<0.05), but did not have an effect on plasma cholesterol. The data indicate that different dietary fatty acid compositions have different effects on plasma lipids. The ADD1 mRNA was decreased (p<0.05) in the liver of DHA oil-treated pigs compared with the tallow-treated pigs. The diets did not have significant effect on the ADD1 mRNA in adipose tissue. Addition of algal DHA oil in the diet increased acyl CoA oxidase (ACO) mRNA concentration in the liver, suggesting that dietary DHA treatment increases peroxisomal fatty acid oxidation in the liver. However, dietary soybean oil supplementation did not affect mRNA concentrations of ADD1 or ACO in the tissues of pigs. Because ADD1 increases the expression of genes associated with lipogenesis, and ACO is able to promote fatty acid oxidation, feeding DHA oil may change the utilization of fatty acids through changing the expression of ADD1 and ACO. Therefore, feeding pigs with high DHA may lead to lower body fat deposition.

Eicosapentaenoic and Docosahexaenoic Acids Reduce Arachidonic Acid Release by Rat Kidney Microsomes

  • Yeo, Young-Keun;Lim, Ah-Young;Lee, Ji-Yoon;Kim, Hyo-Jung;Farkast, Tihor;Kim, Dae-Gon
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.33-38
    • /
    • 1999
  • The effects of eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic acids (DHA, 22:6n-3) on the phospholipase $A_2$ ($PLA_2$)-mediated release of arachidonic acid (AA, 20:4n-6) were studied in kidney microsomes from rats fed diets containing sunflower oil (SO) or fish oil (FO) concentrate for 11 months. The amounts of AA released by the endogenous $PLA_2$ enzyme were significantly lower by 38% in the FO, compared to the SO-fed rats (23.2 nmol versus 60.7 nmol AA released/mg protein/h in the FO- and SO-treated groups, respectively). The FO-derived microsomes released less linoleic acid (LA, 18:2n-6) and adrenic acid (22:4n-6), but larger amounts of the n-3 fatty acids, including EPA, DHA, docosapentaenoic acid (DPA, 22:5n-3), and 20:4n-3 than the SO-derived microsomes. A similar replacement of the AA and adrenic acid with the n-3 fatty acids including EPA and DHA was also observed in the microsomal phospholipid fraction from the FO-fed rats relative to the SO-treated group. The results suggest that the $PLA_2$-mediated release of AA is reduced and that of EPA is increased in compensation for AA decline in kidney microsomes from FO-fed rats (0.7 nmol EPA/mg protein/h versus 22.7 nmol EPA/mg protein/h for the SO and FO-treated groups). Replacement of the n-6 with n-3 fatty acids may explain the reduced synthesis of the AA-derived prostaglandins and the concomitant rise in the EPA-derived prostaglandins observed in kidneys of FO-treated rats.

  • PDF