• Title/Summary/Keyword: Docking system

Search Result 142, Processing Time 0.025 seconds

Development of a Bioconversion System Using Saccharomyces cerevisiae Reductase YOR120W and Bacillus subtilis Glucose Dehydrogenase for Chiral Alcohol Synthesis

  • Yoon, Shin Ah;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1395-1402
    • /
    • 2013
  • Reductases convert some achiral ketone compounds into chiral alcohols, which are important materials for the synthesis of chiral drugs. The Saccharomyces cerevisiae reductase YOR120W converts ethyl-4-chloro-3-oxobutanoate (ECOB) enantioselectively into (R)-ethyl-4-chloro-3-hydroxybutanoate ((R)-ECHB), an intermediate of a pharmaceutical. As YOR120W requires NADPH as a cofactor for the reduction reaction, a cofactor recycling system using Bacillus subtilis glucose dehydrogenase was employed. Using this coupling reaction system, 100 mM ECOB was converted to (R)-ECHB. A homology modeling and site-directed mutagenesis experiment were performed to determine the NADPH-binding site of YOR120W. Four residues (Q29, K264, N267, and R270) were suggested by homology and docking modeling to interact directly with 2'-phosphate of NADPH. Among them, two positively charged residues (K264 and R270) were experimentally demonstrated to be necessary for NADPH 2'-phosphate binding. A mutant enzyme (Q29E) showed an enhanced enantiomeric excess value compared with that of the wild-type enzyme.

A Study on the evaluation of the safety of berthing maneuver by the Analytic Hierarchy Process (계측분석법에 의한 선박 접리안 안전성의 평가방안)

  • 구자윤;이철영;우병구;전상엽
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.4
    • /
    • pp.33-47
    • /
    • 1994
  • On developing port system, the performance tests of system in relation to ship maneuver generally consists of the three parts: the channel transit, the manoeuvring in a turning basin and the docking/undocking. The quantifications of risk of an accident has priviously been difficult due to the low occurrence of accidents relative to the number of transits. Additionally, accident statistics could not be related port system because of the large number of factors contributing to the accident. such as human error, equipment failure, visibility, light, traffic. etc. In case of the channel transit, "Relative Risk Factor(RRF)" or "Relative Risk Factor for Meeting Traffic" was proposed as the as the measures derived to quantify the relative risk of accident by M.W.Smith. This factor measure the tracking performance, the turning performance and the passing performance at meeting traffic. On the other hand, the safety of berthing maneuver is not measured with a few evaluating factors as controlled due to complex controllabilites such as steering, engine, side thrusters or tugs. This work, therefore, aims to propose the evaluating measure by the Analytic Hierarchy Process(AHP). Six experimental scenarios were establised under the various environmental conditions as independent variables. In every simulation, the difficulty of maneuver was scored by captain and compared with AHP scores. The results show almost same and from which the weights of eight evaluating factors could be fixed. Additionally, the limit value of relative factor in berthing safety to six scenarios could be estimated to 0.11.e estimated to 0.11.

  • PDF

Tributyltin and Triphenyltin Residues in Pacific Oyster(Crassostrea gigas) and Rock Shell (Thais clavigera) from the Chinhae Bay System, Korea

  • Shin, Won-Joon;Oh, Jae-Ryoung;Kahng, Sung-Hyun;Shim, Jae-Hyung;Lee, Soo-Hyung
    • Journal of the korean society of oceanography
    • /
    • v.33 no.3
    • /
    • pp.90-99
    • /
    • 1998
  • Butyltin and phenyltin residues were quantified in seawater and biota of the Chinhae Bay System, Korea in 1995. Butyltin compounds were detected in all seawater and biota samples, whereas phenyltin compounds were found only in the biota samples. Tributyltin (TBT) concentrations in seawater ranged from < 8-35 ng Sn/l. Tributyltin concentrations in Crassostyea gigas and Thais clavigera ranged from 95-885 and 23-414 ng Sn/g, respectively, Triphenyltin(TPhT) concentrations in each species ranged 155-678 and 46-785 ng Sn/g, respectively. Spatial distribution of TBT was closely related to boating and dry-docking activities. However, spatial distribution of TPhT was not consistent with that of TBT. The biological concentration factor for TBT in C. gigas was about 25000 that is four times greater than that of T. clavigera. Butyl- to phenyltin concentration ratio was greater than one in C. gigas, but that in T. clavigera was less than one. Major tissues of C. gigas also showed different accumulation patterns for butyl- and phenyltin compounds. Furthermore, 19 and 28% of total body burdens of TBT and TPhT were found in gonadal mass of C. gigas just prior to spawning.

  • PDF

A Study on the Development of Auto Pilot Device at Shallow Water for the Docking of Fishing Boat (천수섬에서 어선 정박을 위한 자동도선시스템에 관한 연구)

  • Lee, Kwi-Joo;Benilov, Alexander Y;Sin, Young-Kuwn;Park, Myung-Kyu;Kim, Kyoung-Hwa;Park, Weon-Me
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.2
    • /
    • pp.144-148
    • /
    • 2004
  • Generally a ship in a port or canal is guided by tugboat(s), while the ship engine(s) and steering mechanism idle. The shortcomings of this method are insufficient in course keeping ability, danger of collision with waterside structures, time-consuming preparation for tugging, as well as the need to maintain tugboats. A new technology for ship guiding, based on the physical principle of interaction of a solid body with aerated liquids has been developed [1]. Model tests were carried out for the verification of system at slow speed by engine operating conditions and with an idle steering. The developed device has been proved to keep the ship on course safely.

Development of Hybrid-FDM Process Using Automatic Tool Changer for Multi-Material Production and Post-Processing (자동공구교환장치를 이용한 융합 FDM 공정 및 장치개발에 관한 연구)

  • Choi, Sung Min;Jian, Xiao;Park, In Baek;Lee, Seok Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.3
    • /
    • pp.235-242
    • /
    • 2016
  • The purpose of this study is an attempt to improve the functionality of a conventional Fused Deposition Modeling (FDM) process using the Automatic Tool Changer (ATC) to perform multimaterial production and post-processing. Hybrid-FDM means a fusion of an Additive Manufacturing process and grinding process using the ATC system. In order to enhance the potentiality of production capacity for multi-material fabrication and surface roughness improvement, two extrusion tools and one grinding tool system are suggested. A pneumatic chuck is attached on a moving platform in the XY axes plane and an extrusion head and grinding head are placed in a docking station, allowing for a quick changeover with each other. Therefore, the manufacturing lead time can be reduced efficiently for the fabrication of a product.

Robotic harvest of a latissimus dorsi flap using a single-port surgical robotic system in breast reconstruction

  • Joo, Oh Young;Song, Seung Yong;Lew, Dae Hyun;Park, Hyung Seok;Lee, Dong Won
    • Archives of Plastic Surgery
    • /
    • v.48 no.6
    • /
    • pp.577-582
    • /
    • 2021
  • Robot-assisted surgery is evolving to incorporate a higher number of minimally invasive techniques. There is a growing interest in robotic breast reconstruction that uses autologous tissue. Since a traditional latissimus dorsi (LD) flap leads to a long donor scar, which can be an unpleasant burden to patients, there have been many attempts to decrease the scar length using minimally invasive approaches. This study presents the case of a patient who underwent a robot-assisted nipple-sparing mastectomy followed by immediate breast reconstruction with an LD flap using a single-port robotic surgery system. With the assistance of a single-port robot, a simple docking process using a short and less visible incision is possible. Compared to multiport surgery systems, single-port robots can reduce the possibility of collision between robotic arms and provide a clear view of the medial border of the LD where the curvature of the back restricts the visual field. We recommend the use of single-port robots as a minimally invasive approach for harvesting LD flaps.

System Design of a Deep-sea Unmanned Underwater Vehicle for Scientific Research (심해 과학조사용 무인잠수정의 시스템 설계)

  • Lee, Pan-Mook;Lee, Choong-Moo;JEON, Bong-Hwan;Hong, Seok-Won;Lim, Yong-Kon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.243-250
    • /
    • 2002
  • According to Ocean Korea 21, a basic plan established by the Ministry of Maritime Affairs and Fisheries (MOMAF) of Korea in May 2000, Korea Research Institute of Ships and Ocean Engineering (KRISO) proposed a program for the development of a deep-sea unmanned underwater vehicle (UUV) to explore deep sea for scientific purpose. KRISO has launched a project in May 2001 under the support of MOMAF. The deep-sea unmanned underwater vehicle will be applied to scientific researches in deep-sea as well as in shallow water. For operation of underwater vehicles in shallow water near the Korean Peninsula, a special design is required because of strong tidal current. In addition, MOMAF requires the vehicle to be designed for the purpose of long range survey, a long-term observation, and precise works in a specific area. Thus, KRISO has planned to design the system with the functional combination of both ROV and AUV. This paper presents the design of the deep-sea unmanned underwater vehicle.

  • PDF

Implementation of an Algorithm for the Estimation of Range and Direction of an Underwater Vehicle Using MFSK Signals (MFSK를 이용한 잠수정의 거리 및 방향 예측알고리즘 구현)

  • KIM SEA-MOON;LEE PAN-MOOK;LEE CHONG-MOO;LIM YONG-KON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.249-256
    • /
    • 2004
  • KRISO/KORDI is currently developing a deep-sea unmanned underwater vehicle (UUV) system which is composed of a launcher, an ROV, and an AUV. Two USBL acoustic positioning systems will be used for UUV's navigation. One is for the deep sea positioning of all three vehicles and the other is for AUV's guidance to the docking device on the launcher. In order to increase the position accuracy MFSK(Multiple Frequency Shift Keying) broadband signal will be used. As the first step to the implementation of a USBL system, this paper studies USBL positioning algorithm using MFSK signals. Firstly, the characteristics of MFSK signal is described with various MFSK parameters: number of frequencies, frequency step, center frequency, and pulse length. Time and phase delays between two received signals are estimated by using cross-correlation and cross-spectrum methods. Finally an USBL positioning algorithm is derived by converting the delays to difference of distances and applying trigonometry. The simulation results show that the position accuracy is improved highly when both cross-correlation and cross-spectrum of MFSK signals are used simultaneously.

  • PDF

A Virtual Reality Molecular Modeling System for Synchronous and Asynchronous Remote Collaboration (동기식 및 비동기식 원격 협업을 위한 가상현실 기반의 분자 모델링 시스템 -가상현실 기반의 분자 도킹 프로세스 및 구조 결정학 시뮬레이션 협업 시스템-)

  • Lee, Jun;Kim, Hyung-Seok;Kang, Lin-Woo;Kim, Jee-In
    • Journal of the HCI Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.17-27
    • /
    • 2009
  • A computer supported cooperative work(CSCW) system is a collaboration system, which enables cooperative works among various participants through the Internet. A collaborative virtual reality environment(CRVE) can be used in scientific research and cultural research because it can provide users with virtual experiences of three dimensional molecular models in cyberspace. However, general CVRE systems are only focused on synchronous collaborations. We propose a remote collaboration system, which provides synchronous and asynchronous cooperation in collaborative virtual reality environment. The proposed system can be applied to bioscience experiments such as molecular docking process, and crystallography simulation. The proposed system is evaluated in performance comparison with previous approaches.

  • PDF

A JXTA- based system for protein structure comparison (JXTA 기반 단백질 구조 비교 시스템)

  • Jung, Hyo-sook;Ahn, Jin-hyun;Park, Seong-bin
    • The Journal of Korean Association of Computer Education
    • /
    • v.12 no.4
    • /
    • pp.57-64
    • /
    • 2009
  • Protein structure comparison is a task that requires a lot of computing resources because many atoms in proteins need to be processed. To address the issue, Grid computing environment has been employed for processing time-consuming jobs in a distributed manner. However, controling the Grid computing environment may not be easy for non-experts. In this paper, we present a JXTA-based system for protein structure comparison that can be easily controled by non-experts. To search proteins similar to a query protein, the geometric hashing algorithm that consists of preprocessing and recognition was employed. Experimental results indicate that the system can find the correct protein structure for a given query protein structure and the proposed system can be easily extended to solve the protein docking problem. It is expected that the proposed system can be useful for non-experts, especially users who do not have sophisticated knowledge of distributed systems in general such as college students who major in biology or chemistry.

  • PDF