• 제목/요약/키워드: Docking Mode

검색결과 44건 처리시간 0.024초

Docking Study of Human Galactokinase Inhibitors

  • Babu, Sathya
    • 통합자연과학논문집
    • /
    • 제8권4호
    • /
    • pp.267-272
    • /
    • 2015
  • Galactosemia is a potentially lethal disorder caused by the deficiency of the enzyme galactose-1-phosphate uridyltransferase (GALT) within the Leloir pathway. Galactokinase (GALK) is the enzyme in Leloir pathway which converts ${\alpha}$-D galactose to galactose 1-phosphate. The elevated level of galactose-1-phosphate, the product of GALK plays a major role in Galactosemia. Therefore the inhibition of GALK is a novel therapy for this disorder. Hence in the present study, we performed molecular docking of twenty inhibitors with different activity against galactokinase into the active site of galactokinase enzyme. The binding mode of these inhibitors was obtained using Surflex dock program interfaced in Sybyl-X2.0. The residues such as SER141, TYR109, ARG105, ARG228, TYR106, GLY346, GLY136, ASP86, ASP186 and SER142 found to interact with inhibitors.

Comparative Modeling of Human P-gp NBD2 and Docking and Binding Mode Analysis of 8-Geranyl Chrysin as a P-gp Modulator

  • Gadhe, Changdev G.
    • 통합자연과학논문집
    • /
    • 제5권1호
    • /
    • pp.18-21
    • /
    • 2012
  • The resistance of tumour cells against cytotoxic drug is significant limitation in successful chemotherapeutic treatment of cancer. To date, no crystal structure is available for human P-gp. We developed homology model for human P-gp NBD2 by using coordinates of transporter associated protein (TAP1). Docking study was performed for 8-geranyl-chrysin (Flavonoids) inhibitor in the NBD2 model. Ligand-protein interactions were determined which indicates that the 8-geranyl chrysin shares two overlapping sites in the cytosolic domains of P-gp, the ATP site and a hydrophobic steroid-binding site.

Human Topoisomerase I-DNA 절개가능 복합체에 대한 Indenoisoquinoline 유도체들의 결합양상 연구 (Binding Mode Studies of Indenoisoquinoline Analogues into Human Topoisomerase I-DNA Complex Using Flexible Docking)

  • 박인선;김보연;김춘미;최선
    • 약학회지
    • /
    • 제53권4호
    • /
    • pp.228-234
    • /
    • 2009
  • Topoisomerase I (Topo I) participates in the DNA replication, transcription, and repair. Binding of Topo I inhibitor to the Topo I-DNA cleavage complex forms stabilized ternary complex which blocks DNA religation and ultimately causes cell death. Camptothecin (CPT) and its derivatives have been among the most effective anticancer drugs by inhibition of topo I. However, efforts to synthesize non-CPT drugs have been actively going on because the CPT derivatives have several limitations such as poor solubility, short half-life, and side effects. As an indenoisoquinoline, NSC314622 is not as potent as CPT, but its chemical stability and slower reversibility of the cleavage complex made it a good lead compound. Recently, a series of indenoisoquinoline analogues were synthesized with substituted dimethoxy or methylenedioxy on the aromatic ring and alkylamino on the lactam nitrogen. Some of them showed quite good Topo I inhibitory activity. Using the computer docking program, Surflex-Dock, indenoisoquinoline analogues were docked into the human Topo I-DNA cleavable complex. The docking results showed that the compounds with activity better than NSC314622 intercalated between the -1 and +1 base pairs at the cleavage site, but those with little or no activities did not appear to intercalate. These results could be useful to design new Topo I inhibitors improved than CPT.

Research on the Development of China "Supermarket-Farmer Direct Purchase" Mode

  • Huang, Yanyan;Kang, Tae-won
    • 한국프랜차이즈경영연구
    • /
    • 제4권1호
    • /
    • pp.113-129
    • /
    • 2013
  • The realization of agricultural modernization, the solving of the "three rural" issue as well as the increment of farmers' income is one of China's top priority. Thus, under the support and encouragement of government's relevant policies, China has introduced the "Supermarket-Farmer Direct Purchase" which is a new mode for the supply of agricultural products. This is an innovative of agricultural products circulation mode, and the comprehensive promotion will help supermarkets get cheap goods directly from the hands of farmers, thus forming price competitiveness; farmers can also get profits and subsidies from supermarkets which can eliminate middlemen's profit, thus increasing their revenue; consumers can both get a guarantee of food safety and save expenses, and the win-win situation for the supermarkets, farmers, and consumers will be achieved. However, the dilemma between "farmers having difficulty in selling" and "supermarkets having difficulty in buying" is still frequent. So in this thesis, through theoretical research and situation analysis, each relevant part of the "Supermarket-Farmer Direct Purchase" mode will be studied as a whole. Moreover, effectiveness will be evaluated and relevant problems will be identified. Then, based on foreign experience and our national conditions, new modes and advice will be provided for users in different circumstances.

Theoretical Characterization of Binding Mode of Organosilicon Inhibitor with p38: Docking, MD Simulation and MM/GBSA Free Energy Approach

  • Gadhe, Changdev G.;Balupuri, Anand;Kothandan, Gugan;Cho, Seung Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2494-2504
    • /
    • 2014
  • P38 mitogen activated protein (MAP) kinase is an important anti-inflammatory drug target, which can be activated by responding to various stimuli such as stress and immune response. Based on the conformation of the conserved DFG loop (in or out), binding inhibitors are termed as type-I and II. Type-I inhibitors are ATP competitive, whereas type-II inhibitors bind in DFG-out conformation of allosteric pocket. It remains unclear that how these allosteric inhibitors stabilize the DFG-out conformation and interact. Organosilicon compounds provide unusual opportunity to enhance potency and diversity of drug molecules due to their low toxicity. However, very few examples have been reported to utilize this property. In this regard, we performed docking of an inhibitor (BIRB) and its silicon analog (Si-BIRB) in an allosteric binding pocket of p38. Further, molecular dynamics (MD) simulations were performed to study the dynamic behavior of the simulated complexes. The difference in the biological activity and mechanism of action of the simulated inhibitors could be explained based on the molecular mechanics/generalized Born surface area (MM/GBSA) binding free energy per residue decomposition. MM/GBSA showed that biological activities were related with calculated binding free energy of inhibitors. Analyses of the per-residue decomposed energy indicated that van der Waals and non-polar interactions were predominant in the ligand-protein interactions. Further, crucial residues identified for hydrogen bond, salt bridge and hydrophobic interactions were Tyr35, Lys53, Glu71, Leu74, Leu75, Ile84, Met109, Leu167, Asp168 and Phe169. Our results indicate that stronger hydrophobic interaction of Si-BIRB with the binding site residues could be responsible for its greater binding affinity compared with BIRB.

Characterization of Binding Mode for Human Coagulation Factor XI (FXI) Inhibitors

  • Cho, Jae Eun;Kim, Jun Tae;Jung, Seo Hee;Kang, Nam Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1212-1220
    • /
    • 2013
  • The human coagulation factor XI (FXI) is a serine protease that plays a significant role in blocking of the blood coagulation cascade as an attractive antithrombotic target. Selective inhibition of FXIa (an activated form of factor XI) disrupts the intrinsic coagulation pathway without affecting the extrinsic pathway or other coagulation factors such as FXa, FIIa, FVIIa. Furthermore, targeting the FXIa might significantly reduce the bleeding side effects and improve the safety index. This paper reports on a docking-based three dimensional quantitative structure activity relationship (3D-QSAR) study of the potent FXIa inhibitors, the chloro-phenyl tetrazole scaffold series, using comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) methods. Due to the characterization of FXIa binding site, we classified the alignment of the known FXIa inhibitors into two groups according to the docked pose: S1-S2-S4 and S1-S1'-S2'. Consequently, highly predictive 3D-QSAR models of our result will provide insight for designing new potent FXIa inhibitors.

Comparison of Some 3-(Substituted-Benzylidene)-1, 3-Dihydro-Indolin Derivatives as Ligands of Tyrosine Kinase Based on Binding Mode Studies and Biological Assay

  • Olgen, Sureyya
    • Archives of Pharmacal Research
    • /
    • 제29권11호
    • /
    • pp.1006-1017
    • /
    • 2006
  • A series of 3-(substituted-benylidene)-1, 3-dihydro- indolin-2-one, 3-(substituted-benylidene)-1, 3-dihydro- indolin-2-thione and 2, 2'-dithiobis 3-(substituted-benylidene)-1, 3-dihydro-indole derivatives was investigated as inhibitor of $p60^{c-Src}$tyrosine kinase by performing receptor docking studies and inhibitory activity toward tyrosine phosphorylation. Some compounds were shown to be docked at the site, where the selective inhibitor PP1 [1-tert-Butyl-3-p-tolyl-1H-pyrazolo[3,4-d]pyrimidine-4-yl-amine] was embedded at the enzyme active site. Evaluation of all compounds for the interactions with the parameters of lowest binding energy levels, capability of hydrogen bond formations and superimposibility on enzyme active site by docking studies, it can be assumed that 3-(substituted-benzylidene)-1, 3-dihydro-indolin-2-one and thione derivatives have better interaction with enzyme active site then 2, 2'-dithiobis 3-(substituted-benzylidene)-1, 3-dihydro indole derivatives. The test results for the inhibitory activity against tyrosine kinase by Elisa method revealed that 3-(substituted-benylidene)-1, 3-dihydro- indolin-2-thione derivatives have more activity then 3-(substituted-benylidene)-1, 3-dihydro- indolin-2-one derivatives.

Identification of Proapoptopic, Anti-Inflammatory, Anti-Proliferative, Anti-Invasive and Anti-Angiogenic Targets of Essential Oils in Cardamom by Dual Reverse Virtual Screening and Binding Pose Analysis

  • Bhattacharjee, Biplab;Chatterjee, Jhinuk
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3735-3742
    • /
    • 2013
  • Background: Cardamom (Elettaria cardamom), also known as "Queen of Spices", has been traditionally used as a culinary ingredient due to its pleasant aroma and taste. In addition to this role, studies on cardamom have demonstrated cancer chemopreventive potential in in vitro and in vivo systems. Nevertheless, the precise poly-pharmacological nature of naturally occurring chemo-preventive compounds in cardamom has still not been fully demystified. Methods:In this study, an effort has been made to identify the proapoptopic, anti-inflammatory, anti-proliferative, anti-invasive and anti-angiogenic targets of Cardamom's bioactive principles (eucalyptol, alpha-pinene, beta-pinene, d-limonene and geraniol) by employing a dual reverse virtual screening protocol. Experimentally proven target information of the bioactive principles was annotated from bioassay databases and compared with the virtually screened set of targets to evaluate the reliability of the computational identification. To study the molecular interaction pattern of the anti-tumor action, molecular docking simulation was performed with Auto Dock Pyrx. Interaction studies of binding pose of eucalyptol with Caspase 3 were conducted to obtain an insight into the interacting amino acids and their inter-molecular bondings. Results:A prioritized list of target proteins associated with multiple forms of cancer and ranked by their Fit Score (Pharm Mapper) and descending 3D score (Reverse Screen 3D) were obtained from the two independent inverse screening platforms. Molecular docking studies exploring the bioactive principle targeted action revealed that H- bonds and electrostatic interactions forms the chief contributing factor in inter-molecular interactions associated with anti-tumor activity. Eucalyptol binds to the Caspase 3 with a specific framework that is well-suited for nucleophilic attacks by polar residues inside the Caspase 3 catalytic site. Conclusion:This study revealed vital information about the poly-pharmacological anti-tumor mode-of-action of essential oils in cardamom. In addition, a probabilistic set of anti-tumor targets for cardamom was generated, which can be further confirmed by in vivo and in vitro experiments.

Binding model for eriodictyol to Jun-N terminal kinase and its anti-inflammatory signaling pathway

  • Lee, Eunjung;Jeong, Ki-Woong;Shin, Areum;Jin, Bonghwan;Jnawali, Hum Nath;Jun, Bong-Hyun;Lee, Jee-Young;Heo, Yong-Seok;Kim, Yangmee
    • BMB Reports
    • /
    • 제46권12호
    • /
    • pp.594-599
    • /
    • 2013
  • The anti-inflammatory activity of eriodictyol and its mode of action were investigated. Eriodictyol suppressed tumor necrosis factor (mTNF)-${\alpha}$, inducible nitric oxide synthase (miNOS), interleukin (mIL)-6, macrophage inflammatory protein (mMIP)-1, and mMIP-2 cytokine release in LPS-stimulated macrophages. We found that the anti-inflammatory cascade of eriodictyol is mediated through the Toll-like Receptor (TLR)4/CD14, p38 mitogen-activated protein kinases (MAPK), extracellular-signal-regulated kinase (ERK), Jun-N terminal kinase (JNK), and cyclooxygenase (COX)-2 pathway. Fluorescence quenching and saturation-transfer difference (STD) NMR experiments showed that eriodictyol exhibits good binding affinity to JNK, $8.79{\times}10^5M^{-1}$. Based on a docking study, we propose a model of eriodictyol and JNK binding, in which eriodictyol forms 3 hydrogen bonds with the side chains of Lys55, Met111, and Asp169 in JNK, and in which the hydroxyl groups of the B ring play key roles in binding interactions with JNK. Therefore, eriodictyol may be a potent anti-inflammatory inhibitor of JNK.

Design of a RANK-Mimetic Peptide Inhibitor of Osteoclastogenesis with Enhanced RANKL-Binding Affinity

  • Hur, Jeonghwan;Ghosh, Ambarnil;Kim, Kabsun;Ta, Hai Minh;Kim, Hyunju;Kim, Nacksung;Hwang, Hye-Yeon;Kim, Kyeong Kyu
    • Molecules and Cells
    • /
    • 제39권4호
    • /
    • pp.316-321
    • /
    • 2016
  • The receptor activator of nuclear factor ${\kappa}B$ (RANK) and its ligand RANKL are key regulators of osteoclastogenesis and well-recognized targets in developing treatments for bone disorders associated with excessive bone resorption, such as osteoporosis. Our previous work on the structure of the RANK-RANKL complex revealed that Loop3 of RANK, specifically the non-canonical disulfide bond at the tip, performs a crucial role in specific recognition of RANKL. It also demonstrated that peptide mimics of Loop3 were capable of interfering with the function of RANKL in osteoclastogenesis. Here, we reported the structure-based design of a smaller peptide with enhanced inhibitory efficiency. The kinetic analysis and osteoclast differentiation assay showed that in addition to the sharp turn induced by the disulfide bond, two consecutive arginine residues were also important for binding to RANKL and inhibiting osteoclastogenesis. Docking and molecular dynamics simulations proposed the binding mode of the peptide to the RANKL trimer, showing that the arginine residues provide electrostatic interactions with RANKL and contribute to stabilizing the complex. These findings provided useful information for the rational design of therapeutics for bone diseases associated with RANK/RANKL function.