• Title/Summary/Keyword: DnA synthesis

Search Result 7, Processing Time 0.027 seconds

Synthesis and Characterization of Pyridinium Dinitramide Salt (피리디니움 디나이트라아마이드염의 합성과 특성연구)

  • Kim, Wooram;Kwon, Younja;Jo, Youngmin
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.397-401
    • /
    • 2016
  • A new solid oxidizer, pyridinium dinitramide (Py-DN) is a low toxic energetic material which can be utilized as a HPGP (high performance green propellant). In this work, Py-DN was synthesized using various starting materials including potassium sulfamate, pyridine hydrochloride, strong nitric acid and sulfuric acid. Physical and chemical properties of the Py-DN were characterized using UV-Vis, FT-IR and a thermal analyzer and their properties were compared to those of previously prepared salts including ammonium dinitramide[ADN, $NH_4N(NO_2)_2$] and guanidine dinitramide[GDN, $NH_2C(NH_2)NH_2N(NO_2)_2$] in our lab. Endothermic and exothermic decomposition temperatures of Py-DN were $77.4^{\circ}C$ and $144.7^{\circ}C$, respectively. The combustion caloric value was 1739 J/g, which is thermally more sensitive than that of conventional dinitramides. It may enable to lower the decomposition temperature, which can reduce preheating temperature required for satellite thruster applications.

Pertussis Toxin Inhibits Colchicine-Induced DNA Synthesis in Human Fibroblast

  • Jang, Won-Hee;Rhee, In-Ja
    • Archives of Pharmacal Research
    • /
    • v.17 no.3
    • /
    • pp.199-203
    • /
    • 1994
  • Several lines evidence indicate that microtubule depolymerization initiates DNA synthesis or enhances the effects of serum or purified growth factors in many types of fibroblasts. Yet little is known about the intracellular events responsible for the mitogenic effect of microtubule disrupting agents. The effects of antitubulin agents on DNA synthesis in sparse and dense cultures in the presence or absence of serum and possible involvement of G-proteins in their mitotic action were examined. In these studies, colchicine by itself appeared to be mitogenic only for confluent quiesecent human lung fibroblasts. In sparse culture, however, colchicine inhibited serum-stimulated DNA synthesis. Colcemid, another antitubulin agent, showed similar effects of growth inhibition and stimulation in sparse and confluent cultures while lumicolhicine, inactive colchicine, did not. The mitogenic effect of two antitubulin agents, colchicine and colcemid, was partially inhibited by pertussis toxin. These data suggest that microtubular integrity is associated with the expression of either negative or positive control on DNA synthesis and mitogenic effect of antitubulin agents may be partially mediated by pertussis toxin-sensitive G protein.

  • PDF

Antibacterial Activities of Methylelaiophylin (Methylelaiophylin의 항균활성)

  • Lee, Dong-Sun;Lee, Sang-Han;WOO, Ju-Hyung;Lee, Jin-Man;Seu, Young-Bae;Hong, Soon-Duck
    • Journal of Life Science
    • /
    • v.7 no.3
    • /
    • pp.180-185
    • /
    • 1997
  • Methylelaiophylin generated superoxide radicals in Bacillus subtilis and showed antibacterial activity against a broad range of gram positive bacteria. The inhibition of DNA synthesis was more sensitive than one of RNA synthesis. A recombination-deficient mutant strain of B. subtilis was 2-fold more sensitive than a wild strain, and this sensitivity was reduced in the presence of an antioxidant, dithiothreitol. Methylelaiophylin generated superoxide radicals in B. subtilis lysates, and this suggests that the antibacterial activity of methylelaiophylin is related to the generation of active oxygen species in the cells.

  • PDF

Water-stable solvent dependent multicolored perovskites based on lead bromide

  • Sharipov, Mirkomil;Hwang, Soojin;Kim, Won June;Huy, Bui The;Tawfik, Salah M.;Lee, Yong-Ill
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.187-197
    • /
    • 2022
  • The synthesis of organic and hybrid organic-inorganic perovskites directly from solution improves the cost- and energy-efficiency of processing. To date, numerous research efforts have been devoted to investigating the influence of the various solvent parameters for the synthesis of lead halide perovskites, focused on the effects of different single solvents on the efficiency of the resulting perovskites. In this work, we investigated the effect of solvent blends for the first time on the structure and phase of perovskites produced via the Lewis base vapor diffusion method to develop a new synthetic approach for water-stable CsPbBr3 particles with nanometer-sized dimensions. Solvent blends prepared with DMF and water-miscible solvents with different Gutmann's donor numbers (DN) affect the Pb ions differently, resulting in a variety of lead bromide species with various colors. The use of a DMF/isopropanol solvent mixture was found to induce the formation of the Ruddlesden-Popper perovskite based on lead bromide. This perovskite undergoes a blue color shift in the solvated state owing to the separation of nanoplatelets. In contrast, the replacement of isopropanol with DMSO, which has a high DN, induces the formation of spherical CsPbBr3 perovskite nanoparticles that exhibit green emission. Finally, the integration of acetone in the solvent system leads to the formation of lead bromide complexes with a yellow-orange color and the perovskite CsPbBr3.

Synthesis of Zeolites ZSM-5 and ZSM-48 from Gasification Ashes of Agricultural Wastes

  • Lin, Kuen-Song;Lin, Wen-Chiang;Chitsan Lin
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.610-615
    • /
    • 2001
  • Over 800 thousand tons per year (TPY) agricultural biowastes, such as sugar cane bagasse, sugarcane leaf, rice straw, rice husk and corn leaf, are produced in Taiwan. These biomasses are the major types of agricultural wastes and are abundantly available. However, these biowastes cause disposal and landfill problems. Ossification ashes of the agricultural biowastes containing 70-95 % amorphous silica would make the utilization system of agricultural biowaste ashes become highly economically and environmentally attractive. Experimentally, high crystallinity (99%$^{+}$) zeolites ZSM-5 and ZSM-48 synthesized from the reaction mixtures containing a silica source from ashes of these biowastes gasification were investigated. Tetrapropylammonium bromide (TPABr) and 1,6-diamino-hexane (C$_{6}$ DN) were used as structure-directing agents in syntheses of ZSM-5 and ZSM-48, respectively. X-ray powder diffraction (XRD) and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDX) data indicated that ZSM-5 or ZSM-48 with a high crystallinity can be obtained within 48 hours of crystallization in the high pressure (15-20 atm) autoclave at 393-473 K. The Si/Al ratios of synthetic zeolite products were determined by X-ray fluorescence (XRF) and induced couple plasma/mass spectroscopy (ICP/MS). It was observed that the ZSM-5 crystals a.e composed of hexagonal rod-shaped crystals with typically 8-13 пm in size by SEM. In addition, ZSM-48 crystalline materials are composed of spherical aggregates of needle-shaped or rod-like crystals with typically 2-3 пm in diameter and 6-8 пm in length.h.

  • PDF

Characterization and Frequency of Vancomycin Resistance in Staphylococcus aureus Isolated in Korea (국내에서 분리된 포도상구균의 Vancomycin 내성빈도 및 특성)

  • 박성언;김종배
    • Biomedical Science Letters
    • /
    • v.6 no.3
    • /
    • pp.201-208
    • /
    • 2000
  • The vancomycin, one of the family of glycopeptide antibiotics, inhibits the synthesis of bacterial cell wall peptidoglycan and has been widely used against gram-positive bacterial infections, especially for a treatment of methicillin resistant S. aureus infection. However, clinical isolate which was intermediately resistant to vancomycin (Mu50: MIC 8 $\mu\textrm{g}$/ml) was isolated in recent years. In this study we performed vancomycin susceptibility test with the increment method and population analysis with clinical isolates S. aureus. Also we did several kinds of tests with three selected isolates (s129: MIC 7 $\mu\textrm{g}$/ml, s134: MIC 7 $\mu\textrm{g}$/ml, s135: MIC 8 $\mu\textrm{g}$/ml) to find out possible mechanism of vancomycin resistance. As a result, the prevalence of vancomycin resistant S. aureus isolates among S. aureus strains resistant to methicillin was 23.3% (25/107). The vancomycin resistances of isolated strains of S. aureus were between those of Mu5O and Mu3 strains. By PCR analysis, none of the isolates with decreased vancomycin susceptibility contained known vancomycin resistant genes such as vanA, vanB, vanC1, vanC2, and vanH. Major bands of 81 kDa, 58 kDa, 33 kDa, 28 kDa were demonstrable in whole cell lysates by SDS-PAGE from all three isolates as well as reference strains. And especially,45 kDa protein was overproduced in Mu50 strains. Among them increased production of NAD$^{+}$-linked-$_{D}$-lactate dehydrogenase (dnLDH) were detected from one clinical strain (s135) and Mu5O strain. From these data, we suggest that the mechanism of vancomycin resistance in these isolates are distinct from that in enterococci.

  • PDF

The Role of MnSOD in the Mechanisms of Acquired Resistance to TNF (TNF에 대한 내성획득에서 MnSOD의 역할에 관한 연구)

  • Lee, Hyuk-Pyo;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.6
    • /
    • pp.1353-1365
    • /
    • 1997
  • Background : Tumor necrosis factor(TNF) has been considered as an important candidate for cancer gene therapy based on its potent anti-tumor activity. However, since the efficiency of current techniques of gene transfer is not satisfactory, the majority of current protocols is aiming the in vitro gene transfer to cancer cells and re-introducing genetically modified cancer cells to host. In the previous study, it was shown that TNF-sensitive cancer cells transfected with TNF-$\alpha$ cDNA would become highly resistant to TNF, and the probability was shown that the acquired resistance to TNF might be associated with synthesis of some protective protein. Understanding the mechanisms of TNF -resistance in TNF-$\alpha$ cDNA transfected cancer cells would be. an important step for improving the efficacy of cancer gene therapy as well as for better understandings of tumor biology. This study was designed to evaluate the role of MnSOD, an antioxidant enzyme, in the acquired resistance to TNF of TNF-$\alpha$ cDN A transfected cancer cells. Method : We transfected TNF-$\alpha$ c-DNA to WEHI164(murine fibrosarcoma cell line), NCI-H2058(human mesothelioma cell line), A549(human non-small cell lung cancer cell line), ME180(human cervix cancer cell line) cells using retroviral vector(pLT12SN(TNF)) and confirm the expression of TNF with PCR, ELISA, MIT assay. Then we determined the TNF resistance of TNF-$\alpha$ cDNA transfected cells(WEHI164-TNF, NCIH2058-TNF, A549-TNF, ME180-TNF) and the changes of MnSOD mRNA expressions with Northern blot analysis. Results : The MnSOD mRNA expressions of parental cells and genetically modified cells of WEHI164 and ME180 cells(both are naturally TNF sensitive) were not significantly different The MnSOD mRNA expressions of genetically modified cells of NCI-H2058 and A549(both are naturally TNF resistant) were higher than those of the parental cells, while those of parental cells with exogenous TNF were also elevated. Conclusion : The acquired resistance to TNF after TNF-$\alpha$ cDNA transfection may not be associated with the change in the MnSOD expression, but the difference in natural TNF sensitivity of each cell may be associated with the level of the MnSOD expression.

  • PDF