• 제목/요약/키워드: Division casting

검색결과 226건 처리시간 0.025초

Ca 첨가에 따른 Mg-4Al-2Sn-xCa 다이캐스팅 합금의 기계적특성 연구 (Effect of Ca additions on Mechanical Properties of Mg-4Al-2Sn-xCa Die-Casting Alloys)

  • 김영민;이영철;박용호
    • 한국주조공학회지
    • /
    • 제31권5호
    • /
    • pp.293-301
    • /
    • 2011
  • Representative magnesium alloys applied to the die-casting are AZ91, AM60, etc., and the application of these alloys is restricted to components operating at moderate temperatures, due to grain boundary siding of ${\beta}$-phase($Mg_{17}Al_{12}$) at temperatures above $120^{\circ}C$. Heat-resistant magnesium alloys such as AE42, AE44 have been developed, but that have been too burdensome to produce because of the expensive rare earth materials. Research work for the development of low-priced heat-resistant magnesium alloy is actively in progress and positive results are being reported. This study aims to investigate the effect of Ca additions on mechanical properties of Mg-4Al-2Sn heat resistant magnesium alloys. Mg-4Al-2Sn alloys with Ca (0wt.%, 0.3wt.%, 0.7wt.%, 1wt.%) have been produced through the die-casting process for the development of low-priced heat-resistant magnesium alloy, and high temperature tensile tests are performed using the specimens. The results showed that mechanical properties of Mg-4Al-2Sn-xCa increased with the addition of Ca up to 0.7wt.% Ca and further addition of Ca deteriorated the mechanical properties of the alloys. A significant amount of porosity was observed at the sample with 1wt%. Ca and the longer freezing range of the alloy was believed to cause the formation of porosity.

스트립캐스팅한 구상흑연주철박판의 합금원소 및 열처리에 따른 미세조직과 기계적 성질의 변화 (Effects of Alloying Elements and Heat Treatments on the Microstructures and Mechanical Properties of Ductile Cast Iron by Strip Casting)

  • 이기락;나형용
    • 한국주조공학회지
    • /
    • 제20권2호
    • /
    • pp.122-128
    • /
    • 2000
  • Strip casting process is a new technology that makes a near net shape thin strip directly from molten metal. With this process, a large amount of energy and casting cost could be decreased from the abbreviation of reheating and/or hot rolling process. Ductile cast iron which has spheroidal graphite in the matrix is the most commercial and industrial material, because of its supreme strength, toughness, and wear resistance etc. But it cannot be produced to the thin strip owing to difficulty in rolling of ductile cast iron. In this study, ductile cast iron strips are produced by the twin roll strip caster, with different chemical compositions of C, Si, and Mn contents. And then heat-treated, microstructures and mechanical properties are examined. The microstructures of as-cast strip are that of white cast iron which consists of the mixture of cementite and pearlite, but the equiaxed crystal zone of the pearlite or segregation zone of cementite exists in the center region of the strip thickness, which cannot be observed in the rapidly solidified metallic mold cast specimens. This structure is supposed to be formed from the thermal distribution of strip and the rolling force. Comparing with the structures of each strips after heat treatment, increasing Si content makes smaller spheroidal graphite and more compact in the matrix, furthermore the less of Mn content makes the ferrite matrix be obtained clearer and easier. As a result of the tensile test of graphitization heat-treated strips, the yield strengths are about 250 MPa, the tensile strengths are about $430{\sim}500$ MPa, and the elongations are about $10{\sim}13%$. In the case of the strip which has the smaller and more compact spheroidal graphite in the ferrite matrix, the higher tensile strength and better drawability could be obtained.

  • PDF

PES 여과막의 물리적 막오염 개선을 위한 기공 구조 개선 연구 (Improving Physical Fouling Tolerance of PES Filtration Membranes by Using Double-layer Casting Methods)

  • 김창헌;유영민;김인철;남승은;이정현;백영빈;조영훈
    • 멤브레인
    • /
    • 제33권4호
    • /
    • pp.191-200
    • /
    • 2023
  • Polyethersulfone (PES)은 친수성과 상분리법의 용이성 덕분에 수처리 및 정제 분야에서 정밀여과 및 한외여과막 소재로 일반적으로 사용된다. 그러나, 비용매 유도 상분리법으로 제조된 PES 분리막, 특히 지지체가 없는 여과막의 경우 도프의 조성과 기재의 특성에 따라 여과막 하부에 낮은 기공도를 갖는 치밀층이 형성되기 쉽고, 이러한 치밀층으로 인해 수투과 저항이 증가하고 오염물질의 쌓임에 의한 막오염이 일어난다. 본 연구에서는 PES 여과막 제조 시 상전이 과정의 수축으로 인해 분리막 하부에 물이 침투하여 치밀층을 형성, 심각한 막오염을 유발할 수 있음을 확인하였다. 동일한 선택층을 갖는 PES 여과막을 단일층 및 이중층 캐스팅법으로 각각 제조하여 하부 치밀층이 여과막의 투과성능 및 막오염에 미치는 영향을 파악하고자 하였다. 하부 치밀층이 없는 이중층 캐스팅된 여과막은 기존 여과막 대비 높은 투과성능 및 막오염에 대한 저항성을 보였으며, 이를 통해 다공성 여과막의 내오염성을 향상시키기 위한 표면 기공도 및 기공 구조 등 물리적 구조의 최적화가 중요함을 확인하였다.

Effect of Carbon on Wear Resistance in Self-lubricating Fe-Cr-C-Mn-Cu Alloys

  • Kim, Ki Nam;Shin, Gyeong Su;Park, Myung Chul;Lee, Sung Yong;Yun, Jae Yong;Kim, Seon Jin
    • 대한금속재료학회지
    • /
    • 제50권9호
    • /
    • pp.637-643
    • /
    • 2012
  • Recently, because of safety and environmental concerns, there has been a tendency to introduce solid self-lubricating composites for bearing materials. In this paper, we developed Fe-Cr-C-Mn-Cu cast composite alloys as a self-lubricating composite and investigated the effect of carbon on the formation of protective tribofilms during sliding. The wear resistance of these materials was mainly affected by carbon concentrations due to the fact that in particular wear passed from delamination to tribo-oxidation, reducing the wear rate. The improved wear resistance likely resulted from protective tribofilms that formed on the surface during sliding.

가압함침법에 의한 $Al_2O_3/Al$ 복합재료의 기공 및 편석의 발생에 대한 분석연구 (Analysis of the Formation of Porosity and Segregation in $Al_2O_3/Al$ Composites by Squeeze Infiltration Method)

  • 서영호;이형국
    • 한국주조공학회지
    • /
    • 제21권3호
    • /
    • pp.163-178
    • /
    • 2001
  • The squeeze infiltration process is potentially of considerable industrial importance. The performance enhancements resulting from incorporation of short alumina fiber into aluminum are well documented. These are particularly significant for certain automobile components. Aluminum matrix composite automotive parts, such as diesel engine pistons or engine blocks are produced using squeeze casting apparatus or pressure die-casting apparatus. But the solidification process gets complicated with manufacturing parameters and the factors for porosity formation have not fully understood yet. In this study the formation of porosity during squeeze infiltration has been studied experimentally to achieve an improved understanding of the squeeze infiltration process for manufacture of short-fiber-reinforced components, particularly the mechanism of porosity formation. Al-based MMCs produced under a range of conditions were examined metallographically and the porosity characterised;a kind of matrix, an initial temperature of melt, and a volume fraction of reinforcement. The densimetry and the microscopic image analysis were done to measure the amount of porosity. A correlation between manufacturing parameters and defects was investigated through these.

  • PDF

Al-5%Mg계 주조합금의 물성 및 시효경화특성에 미치는 합금원소의 영향 (Effects of Alloying Elements on the Properties and Aging Hardening of Al-5%Mg Based Casting Alloys)

  • 김정민;박준식;조재익;김현길
    • 한국주조공학회지
    • /
    • 제30권1호
    • /
    • pp.29-33
    • /
    • 2010
  • The microstructure of Al-5%Mg based alloy mainly consists of aluminum matrix with a small amount of AlMn phase. The addition of Sc or Zn to the base alloy significantly improved the as-cast tensile strength, while the addition of Fe deteriorated both strength and ductility. Although the Al-5%Mg based alloy was not heat-treatable, aging hardening could be observed in the case that Sc or Zn was added to the base alloy. TEM analysis showed that very fine AlSc or AlMgZn precipitates were formed after T6 heat treatment, resulting in enhanced strength. The corrosion resistance measured as corrosion potential was found to decrease a little by adding Zn, whereas other alloying elements were not clearly influential.

Lot Planning & Scheduling in the Integrated Steelmaking Process

  • Park Hyungwoo;Hong Yushin
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2002년도 춘계공동학술대회
    • /
    • pp.109-113
    • /
    • 2002
  • Steel industry is the most capital intensive and the largest energy consuming industry, which operate huge and complex facilities to supply various steel products as the primary materials to almost every manufacturing industry Major steel products are hot-rolled and cold-rolled coils, plates, and wires that are produced through molten iron making, molten steel making, casting, and rolling. Each process runs in batch between setups and the specifications or bach are different with each other High energy consuming and heavy material handling require careful synchronization or processes, as well. Considering the synchronization or processes, the lot planning and scheduling problem in the integrated steelmaking process rovers the roll grouping with given casts. the sequencing or rolls over time, and the machine assignment and time scheduling or charges and casts. The problem is investigated by dividing it into two cases whether single or parallel machines at the molten steel making and the continuous casting processes. Problem descriptions and solution approaches or each instance are introduced. To test their performance and conformity, implementation or the algorithms and numerical experiments are carried out with real world and constructed data sets.

  • PDF

폴리설폰 상전환막의 제조에 있어 프로피오닉산 첨가제의 영향 (Effect of Propionic Acid Additive on Preparation of Phase Inversion Polysulfone Membrane)

  • 한명진;최승락;박소진;서범경;이근우;남석태
    • 멤브레인
    • /
    • 제18권4호
    • /
    • pp.317-324
    • /
    • 2008
  • 상전환법을 이용하여 폴리설폰 고분자막을 제조하고 막의 형상과 투과특성을 측정하였다. 폴리설폰, n-메틸피롤리돈과 프로피오닉산으로 이루어진 제막용액에서 프로피오닉산은 폴리설폰에 대한 비용매로서 제막용액에 첨가되었으며, 침지용 비용매로는 이소프로필알코올이 사용되었다. 첨가된 프로피오닉산은 제막용액의 열역학적 성질을 변화시켜 열역학적 상분리를 촉진하는 역할을 할 수 있음을 보였으며, 제막용액의 점도는 프로피오닉산의 양에 따라 증가하여 프로피오닉산의 첨가에 따라 유동성이 감소하는 특성을 보였다. 제조된 모든 분리막은 프로피오닉산의 첨가에 따라 뚜렷하게 구분되는 형상을 보였다. 프로피오닉산 없이 제조된 막의 밀집화된 표면층은 프로피오닉산이 10wt% 첨가되었을 때 거의 사라졌으며, 30 wt% 첨가되었을 때 분리막은 알갱이 형태의 표면층으로부터 스폰지 형태의 하부층으로 형상의 차이가 구배를 보이며 나타났다. 물 투과도는 비용매 프로피오닉산의 증가와 함께 증대하였으며 폴리에틸렌글리콜을 사용한 배제율의 경우 프로피오닉산의 증가와 함께 감소하는 것으로 나타났다.

SiCp입자강화 Al 복합재료에 대한 합금원소의 영향과 시효특성에 관한 연구 (A Study on Ageing Characteristics and Alloy Elements of SiCp Reinforced Al Matrix Composites)

  • 김석원;이의종;우기도;김동건
    • 한국주조공학회지
    • /
    • 제21권1호
    • /
    • pp.7-14
    • /
    • 2001
  • The research on new DRA(discontinuous reinforced alloy) and CRA(continous reinforced alloy) composites has been carried out to improve the properties of ceramic fiber and particle reinforced metal matrix composites(MMCs). Effects of alloying elements and aging conditions on the microstructures and aging behavior of Al-Si-Cu-Mg-(Ni)-SiCp composite have been examined. The specimens used in this study were manufactured by duplex process. The first squeeze casting is the process to make precomposite and the second squeeze casting is the process to make final composite. The hardening behavior was accelerated with decreasing the size of SiCp particle in the composites. It is considered that the dislocation density increased with increasing SiCp size, due to the different thermal deformation between Al matrix and SiCp during quenching after the solution treatment. Peak aging time to obtain the maximum hardness in 3 ${\mu}m$ SiCp reinforced Al composite was reduced than that in large size(5, 10 ${\mu}m$) of SiCp because of difference in dislocation density. Aging hardening responce(${\Delta}H$ = $H_{Max}.-H_{S.T}$) of composites was greater than that of unreinforced Al alloy because of higher density of second phases in matrix.

  • PDF

Efficacy of Ag-CuO Filler Tape for the Reactive Air Brazing of Ceramic-Metal Joints

  • Kim, Myung Dong;Wahid, Muhamad FR;Raju, Kati;Kim, Seyoung;Yu, Ji Haeng;Park, Chun Dong;Yoon, Dang-Hyok
    • 한국세라믹학회지
    • /
    • 제55권5호
    • /
    • pp.492-497
    • /
    • 2018
  • This paper reports the efficacy of tape casting using an Ag-10 wt% CuO filler for the successful joining of a sintered $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}-La_{0.7}Sr_{0.3}MnO_{3{\pm}{\delta}}$ (GDC-LSM) ceramic with a SUS 460 FC metal alloy by reactive air brazing. The as-prepared green tape was highly flexible without drying cracks, and the handling was easy when used as a filler material for reactive air brazing. Heat treatment for the GDC-LSM/SUS 460 FC joint was performed at $1050^{\circ}C$ for 30 min in air. Microstructural observations indicated a reliable and compact joining. The room temperature mechanical shear strength of the as-brazed joints was $60{\pm}8MPa$ with a cohesive failure. The flexural strength of joints was measured from room temperature up to $850^{\circ}C$, where the strength retention revealed to be almost 100% at $500^{\circ}C$. However, the joints showed a degradation in strengths at 800 and $850^{\circ}C$, exhibiting strength retentions of 57% and 37%, respectively.